I've done some tests on this little monster:
- Code: Select all
7 . 8|. . .|3 . .
. . .|2 . 1|. . .
5 . .|. . .|. . .
-----+-----+-----
. 4 .|. . .|. 2 6
3 . .|. 8 .|. . .
. . .|1 . .|. 9 .
-----+-----+-----
. 9 .|6 . .|. . 4
. . .|. 7 .|5 . .
. . .|. . .|. . .
With only singles and line-box interactions, no magic cells are available.
R1C9D5 followed by R4C3D7 does completely solve the puzzle. I have not fully tested for all other magic pairs, however, a few other combinations do seem to work.
With singles, line-box interactions & naked & hidden subsets, the magic cells are:
R4C3D7
R6C6D7
To prove any of these 2, at least 3 competing candidates must be eliminated:
R4 C3 D159 or
R6 C237 D7 or
R345 C6 D7 or
R4 C467 D7
Building proof chains for these is extremely difficult, since I have to do this by hand
Interestingly, after placement of R1C9D5, this candidate list is formed:
- Code: Select all
.------------------.------------------.------------------.
| 7 2 8 | 9 4 6 | 3 1 5 |
| 9 3 4 | 2 5 1 | 6 7 8 |
| 5 1 6 | 78 3 78 | 2 4 9 |
:------------------+------------------+------------------:
| 1 4 57 | 57 9 3 | 8 2 6 |
| 3 6 9 | 4 8 2 | 1 5 7 |
| 8 57 2 | 1 6 57 | 4 9 3 |
:------------------+------------------+------------------:
| 2 9 35 | 6 1 58 | 7 38 4 |
| 4 8 1 | 3 7 9 | 5 6 2 |
| 6 57 357 | 58 2 4 | 9 38 1 |
'------------------'------------------'------------------'
Does anyone spot a BUG here?
With all solving methods enabled, except tabling, these are magic cells:
R1C9D5
R2C5D5
R2C7D6
R2C8D7
R3C7D2
R4C3D7
R6C3D2
R6C6D7
R7C1D2
R7C7D7
R8C9D2
With tabling enabled, every cell is a magic cell, with the exception of:
R2C1D9
R2C2D3
R3C5D3
R6C9D3
Ruud.