I would take a poly-valued cell, each candidate of that poly-valued cell is then picked to see what are the implications of it being the actual occupant of that cell.
I use only simple eliminations to study implications (to make it easier for humans), any advanced technique can be used of course.
If another bi- or poly-valued cell turns out to have exactly the same candidates with each candidate from the original cell then we can safely say that the the 2nd cell must have those same candidates (single or poly).
This is not new of course. I just don't know what is its name. There is no Contradiction involved so it shouldn't fit the GENERAL term of T&E.
I'll post the puzzle from which I discovered that I made a mistake in naming the technique. which came from here........
I have also posted this in the Programmers Index....
- Code: Select all
. 5 . | . . 1 | 6 . .
3 . 6 | . . 2 | . . .
. . 9 | 3 . . | 2 . 4
-------+-------+------
. . 4 | 5 3 . | 1 8 2
. . . | 8 . 4 | . . .
8 . 5 | 1 2 . | 4 . .
-------+-------+------
6 . 1 | . . 5 | 3 . .
. . . | 6 . . | 9 . 1
. . 7 | 2 1 . | . 4 6
*--------------------------------------------------------------------------*
| 247 5 28 | 479 4789 1 | 6 379 3789 |
| 3 1478 6 | 479 45789 2 | 578 1579 5789 |
| 17 178 9 | 3 5678 678 | 2 157 4 |
|------------------------+------------------------+------------------------|
| 79 679 4 | 5 3 679 | 1 8 2 |
| 1279 123679 23 | 8 679 4 | 57 35679 3579 |
| 8 3679 5 | 1 2 679 | 4 3679 379 |
|------------------------+------------------------+------------------------|
| 6 2489 1 | 479 4789 5 | 3 27 78 |
| 245 2348 238 | 6 478 378 | 9 257 1 |
| 59 389 7 | 2 1 389 | 58 4 6 |
*--------------------------------------------------------------------------*
Eliminating 7 From r5c9 (XY wing)
Eliminating 7 From r6c9 (XY wing)
*--------------------------------------------------------------------------*
| 247 5 28 | 479 4789 1 | 6 379 3789 |
| 3 1478 6 | 479 45789 2 | 578 1579 5789 |
| 17 178 9 | 3 5678 678 | 2 157 4 |
|------------------------+------------------------+------------------------|
| 79 679 4 | 5 3 679 | 1 8 2 |
| 1279 123679 23 | 8 679 4 | 57 35679 359 |
| 8 3679 5 | 1 2 679 | 4 3679 39 |
|------------------------+------------------------+------------------------|
| 6 2489 1 | 479 4789 5 | 3 27 78 |
| 245 2348 238 | 6 478 378 | 9 257 1 |
| 59 389 7 | 2 1 389 | 58 4 6 |
*--------------------------------------------------------------------------*
7 in r7c8 would make placing other 7s impossible (Nishio)
*--------------------------------------------------------------------------*
| 247 5 28 | 479 4789 1 | 6 379 3789 |
| 3 1478 6 | 479 45789 2 | 578 1579 5789 |
| 17 178 9 | 3 5678 678 | 2 157 4 |
|------------------------+------------------------+------------------------|
| 79 679 4 | 5 3 679 | 1 8 2 |
| 1279 123679 23 | 8 679 4 | 57 35679 359 |
| 8 3679 5 | 1 2 679 | 4 3679 39 |
|------------------------+------------------------+------------------------|
| 6 489 1 | 479 4789 5 | 3 2 78 |
| 245 2348 238 | 6 478 378 | 9 57 1 |
| 59 389 7 | 2 1 389 | 58 4 6 |
*--------------------------------------------------------------------------*
Any Candidate in r3c8 forces r1c3 to have only 2 as valid Candidates (Forcing Sequence) or Something else ????
Any Candidate in r3c8 forces r3c2 to have only 8 as valid Candidates (Forcing Sequence
Any Candidate in r3c8 forces r3c6 to have only 6 as valid Candidates (Forcing Sequence)
Any Candidate in r3c8 forces r5c3 to have only 3 as valid Candidates (Forcing Sequence)
Any Candidate in r3c8 forces r8c3 to have only 8 as valid Candidates (Forcing Sequence)