claudiarabia wrote:Without the 2 in r5c5 Simple Sudoku shows 19 solution. With the 2 in r5c5 it shows 3 solutions only. But the 2 is omittable because you can detect it easily by placing singles and Line vs. Box and Pairs and a Unique rectangle Type 1. But when the 2 is a part of the main solution that means, that Simple Sudoku is showing more solutions than actually are because it can't detect the rectangles and other strategies I suppose.
Claudia, Simple Sudoku makes no mistake in counting 19 solutions for your puzzle, and your logic for the placement r5c5=2 is faulty. You can't apply UR (type 1) on a puzzle with multiple solutions!
I'll show you all 19 solutions. SS takes us to this state:
- Code: Select all
*-----------------------------------------------------------*
| 24 5 24 | 79 8 79 | 3 6 1 |
| 3 69 69 | 1 4 2 | 8 5 7 |
| 7 1 8 | 56 3 56 | 4 2 9 |
|-------------------+-------------------+-------------------|
| 1 4 3567 | 367 9 367 | 567 8 2 |
| 8 36 3567 | 2367 12 1367 | 5679 79 4 |
| 9 2 67 | 8 5 4 | 67 1 3 |
|-------------------+-------------------+-------------------|
| 5 8 1 | 39 7 39 | 2 4 6 |
| 6 39 239 | 4 12 8 | 179 79 5 |
| 24 7 249 | 25 6 15 | 19 3 8 |
*-----------------------------------------------------------*
Where you can't make any more legal elimination from here.
If you assume r5c5=2, after a few trivial moves you arrive at:
- Code: Select all
*--------------------------------------------------*
| 2 5 4 | 79 8 79 | 3 6 1 |
| 3 9 6 | 1 4 2 | 8 5 7 |
| 7 1 8 | 5 3 6 | 4 2 9 |
|----------------+----------------+----------------|
| 1 4 35 | 6 9 37 | 57 8 2 |
| 8 6 35 | 37 2 1 | 579 79 4 |
| 9 2 7 | 8 5 4 | 6 1 3 |
|----------------+----------------+----------------|
| 5 8 1 | 39 7 39 | 2 4 6 |
| 6 3 2 | 4 1 8 | 79 79 5 |
| 4 7 9 | 2 6 5 | 1 3 8 |
*--------------------------------------------------*
... which obviously leads to 3 solutions by assigning r5c7 to 5|7|9 respectively.
However, if you assume r5c5=1, you arrive at:
- Code: Select all
*-----------------------------------------------------------*
|@24 5 @24 | 79 8 79 | 3 6 1 |
| 3 69 69 | 1 4 2 | 8 5 7 |
| 7 1 8 | 6 3 5 | 4 2 9 |
|-------------------+-------------------+-------------------|
| 1 4 3567 | 37 9 367 | 567 8 2 |
| 8 36 3567 | 2 1 367 | 567 9 4 |
| 9 2 67 | 8 5 4 | 67 1 3 |
|-------------------+-------------------+-------------------|
| 5 8 1 | 39 7 39 | 2 4 6 |
| 6 39 39 | 4 2 8 | 1 7 5 |
|@24 7 @24 | 5 6 1 | 9 3 8 |
*-----------------------------------------------------------*
Notice the deadly pattern in r19c13, that means this grid at least yield to 2 solutions. But all other cells are quite intertwined, so it takes a bit of work to enumerate all 16 solutions from this position.
Firstly notice in b5, the 6 can only appear in r4c6 or r5c6.
Assuming r5c6=6, after a few trivial moves:
- Code: Select all
*-----------------------------------------*
|@24 5 @24 |*79 8 *79 | 3 6 1 |
| 3 6 9 | 1 4 2 | 8 5 7 |
| 7 1 8 | 6 3 5 | 4 2 9 |
|-------------+-------------+-------------|
| 1 4 #56 |*37 9 *37 |#56 8 2 |
| 8 3 #57 | 2 1 6 |#57 9 4 |
| 9 2 #67 | 8 5 4 |#67 1 3 |
|-------------+-------------+-------------|
| 5 8 1 |*39 7 *39 | 2 4 6 |
| 6 9 3 | 4 2 8 | 1 7 5 |
|@24 7 @24 | 5 6 1 | 9 3 8 |
*-----------------------------------------*
You can easily notice this grid yields 8 solutions from the deadly patterns in r19c13, r147c46 & r456c37 respectively.
Assuming r4c6=6, and r5c2=3, you arrive at:
- Code: Select all
*-----------------------------------------*
|@24 5 @24 | 7 8 9 | 3 6 1 |
| 3 6 9 | 1 4 2 | 8 5 7 |
| 7 1 8 | 6 3 5 | 4 2 9 |
|-------------+-------------+-------------|
| 1 4 #57 | 3 9 6 |#57 8 2 |
| 8 3 #56 | 2 1 7 |#56 9 4 |
| 9 2 #67 | 8 5 4 |#67 1 3 |
|-------------+-------------+-------------|
| 5 8 1 | 9 7 3 | 2 4 6 |
| 6 9 3 | 4 2 8 | 1 7 5 |
|@24 7 @24 | 5 6 1 | 9 3 8 |
*-----------------------------------------*
This grid yields 4 solutions from the DPs in r19c13 & r456c37.
Finally, assuming r4c6=6, and r5c2=6, you arrive at:
- Code: Select all
*-----------------------------------------*
|@24 5 @24 |*79 8 *79 | 3 6 1 |
| 3 9 6 | 1 4 2 | 8 5 7 |
| 7 1 8 | 6 3 5 | 4 2 9 |
|-------------+-------------+-------------|
| 1 4 *35 |*37 9 6 |*57 8 2 |
| 8 6 *35 | 2 1 *37 |*57 9 4 |
| 9 2 7 | 8 5 4 | 6 1 3 |
|-------------+-------------+-------------|
| 5 8 1 |*39 7 *39 | 2 4 6 |
| 6 3 9 | 4 2 8 | 1 7 5 |
|@24 7 @24 | 5 6 1 | 9 3 8 |
*-----------------------------------------*
This again yields 4 solutions from the UR-style DP in r19c13 and the complex 8-cell BUG-lite-style DP in r1457c3467.
Moral of the story: don't blindly apply uniqueness-based techniques on multiple-solutional puzzles, and don't hastily accuse good programs of malfunctioning.