.
My solution uses a second and commonly found impossible pattern.
hidden-triplets-in-a-block: b4{n3 n6 n9}{r6c1 r5c2 r5c1} ==> r6c1≠8, r6c1≠5, r5c2≠7, r5c2≠4, r5c1≠8, r5c1≠5
whip[1]: c1n5{r9 .} ==> r7c3≠5
whip[1]: c1n8{r9 .} ==> r7c3≠8
- Code: Select all
Trid-OR2-relation for digits 5, 8 and 4 in blocks:
b5, with cells (marked #): r4c5, r5c6, r6c4
b6, with cells (marked #): r4c9, r5c7, r6c8
b8, with cells (marked #): r8c5, r7c6, r9c4
b9, with cells (marked #): r8c7, r7c9, r9c8
with 2 guardians (in cells marked @): n7r4c5 n3r6c4
+----------------------+----------------------+----------------------+
! 1 2 3 ! 458 458 4568 ! 7 4568 9 !
! 47 5 6 ! 13478 23478 9 ! 148 348 248 !
! 47 8 9 ! 13457 23457 2456 ! 145 3456 245 !
+----------------------+----------------------+----------------------+
! 2 47 4578 ! 6 4578#@ 1 ! 3 9 458# !
! 369 369 4578 ! 34578 345789 458# ! 458# 2 1 !
! 39 1 458 ! 3458#@ 234589 2458 ! 6 458# 7 !
+----------------------+----------------------+----------------------+
! 358 347 47 ! 9 6 458# ! 2 1 458# !
! 589 49 1 ! 2 458# 3 ! 458# 7 6 !
! 568 46 2 ! 458# 1 7 ! 9 458# 3 !
+----------------------+----------------------+----------------------+
EL14c30s-OR3-relation for digits: 4, 5 and 8
in cells (marked #): (r1c5 r1c8 r4c5 r4c9 r6c6 r6c8 r5c6 r5c7 r8c5 r8c7 r7c6 r7c9 r9c4 r9c8)
with 3 guardians (in cells marked @) : n6r1c8 n7r4c5 n2r6c6
+----------------------+----------------------+----------------------+
! 1 2 3 ! 458 458# 4568 ! 7 4568#@ 9 !
! 47 5 6 ! 13478 23478 9 ! 148 348 248 !
! 47 8 9 ! 13457 23457 2456 ! 145 3456 245 !
+----------------------+----------------------+----------------------+
! 2 47 4578 ! 6 4578#@ 1 ! 3 9 458# !
! 369 369 4578 ! 34578 345789 458# ! 458# 2 1 !
! 39 1 458 ! 3458 234589 2458#@ ! 6 458# 7 !
+----------------------+----------------------+----------------------+
! 358 347 47 ! 9 6 458# ! 2 1 458# !
! 589 49 1 ! 2 458# 3 ! 458# 7 6 !
! 568 46 2 ! 458# 1 7 ! 9 458# 3 !
+----------------------+----------------------+----------------------+
Trid-OR2-whip[3]: OR2{{n7r4c5 | n3r6c4}} - r6c1{n3 n9} - c5n9{r6 .} ==> r5c5≠7biv-chain[3]: r5n7{c4 c3} - c2n7{r4 r7} - c2n3{r7 r5} ==> r5c4≠3
hidden-triplets-in-a-row: r5{n3 n6 n9}{c5 c1 c2} ==> r5c5≠8, r5c5≠5, r5c5≠4
Trid-OR2-whip[3]: OR2{{n3r6c4 | n7r4c5}} - b2n7{r2c5 r3c4} - c4n1{r3 .} ==> r2c4≠3
Trid-OR2-whip[3]: OR2{{n3r6c4 | n7r4c5}} - b2n7{r2c5 r2c4} - c4n1{r2 .} ==> r3c4≠3singles ==> r6c4=3, r5c5=9, r6c1=9, r8c2=9
z-chain[3]: r3n3{c5 c8} - c8n6{r3 r1} - r1n5{c8 .} ==> r3c5≠5
z-chain[3]: r3n3{c5 c8} - c8n6{r3 r1} - r1n4{c8 .} ==> r3c5≠4
z-chain[4]: r3n3{c5 c8} - r3n6{c8 c6} - b2n2{r3c6 r2c5} - c5n3{r2 .} ==> r3c5≠7
biv-chain[3]: r2c1{n4 n7} - r3n7{c1 c4} - b2n1{r3c4 r2c4} ==> r2c4≠4
whip[4]: r5n7{c4 c3} - r4c2{n7 n4} - r9n4{c2 c8} - r6n4{c8 .} ==> r5c4≠4
EL14c30s-OR3-whip[4]: c5n3{r2 r3} - b2n2{r3c5 r3c6} - OR3{{n2r6c6 n7r4c5 | n6r1c8}} - c6n6{r1 .} ==> r2c5≠7The end is easy, in W4.
.