AnotherLife wrote:Can anyone offer a good solution to this not very hard sudoku? I mean, it should be human but not artificial computer-based (adieu Berthier, c'est fini).
- Code: Select all
 .1..5.628..6.........89..4....41.26.1.......5.62.85....7..28.........7..245.6..1.
 
Nobody on this forum decides who may answer a question or not. If you don't accept this policy, you'd better open your own private club, where only people venerating you are allowed to speak. 
Almost everybody on this forum uses computer assistance in a way or another. Some say it, some prefer not to say it.
Computer analysis of a puzzle allows to see things that a manual solver is unlikely to find.
The puzzle (SER 6.3) is quite easy.
18 Singles and three whips[1] (pointing/claiming....):
- Code: Select all
 whip[1]: c7n5{r3 .} ==> r2c8 ≠ 5
whip[1]: r3n7{c3 .} ==> r2c1 ≠ 7, r1c1 ≠ 7, r1c3 ≠ 7
whip[1]: r1n9{c3 .} ==> r2c2 ≠ 9, r2c1 ≠ 9
lead to the following resolution state, which will be the starting point for the forthcoming solutions.
- Code: Select all
    349       1         39        37        5         347       6         2         8         
   3458      358       6         2         34        1         359       379       379       
   357       2         37        8         9         6         35        4         1         
   35789     3589      3789      4         1         39        2         6         379       
   1         39        4         6         7         2         39        8         5         
   379       6         2         39        8         5         1         379       4         
   39        7         139       1359      2         8         4         359       6         
   6         389       1389      1359      34        349       7         359       2         
   2         4         5         379       6         379       8         1         39
        1) Simplest-first solution, using only reversible patterns of size no more than 3: Show hidden-pairs-in-a-column: c4{n1 n5}{r7 r8} ==> r8c4 ≠ 9, r8c4 ≠ 3, r7c4 ≠ 9, r7c4 ≠ 3
z-chain[2]: c4n9{r6 r9} - b9n9{r9c9 .} ==> r6c8 ≠ 9
z-chain[2]: r5n3{c2 c7} - r3n3{c7 .} ==> r2c2 ≠ 3
biv-chain[3]: r4c6{n3 n9} - c4n9{r6 r9} - b8n7{r9c4 r9c6} ==> r9c6 ≠ 3
biv-chain[2]: r9n3{c9 c4} - b5n3{r6c4 r4c6} ==> r4c9 ≠ 3
biv-chain[2]: c9n3{r9 r2} - c5n3{r2 r8} ==> r8c8 ≠ 3, r9c4 ≠ 3
hidden-single-in-a-row ==> r9c9 = 3
whip[1]: r7n3{c3 .} ==> r8c2 ≠ 3, r8c3 ≠ 3
whip[1]: c2n3{r5 .} ==> r4c1 ≠ 3, r4c3 ≠ 3, r6c1 ≠ 3
whip[1]: r9n9{c6 .} ==> r8c6 ≠ 9
whip[1]: b9n9{r8c8 .} ==> r2c8 ≠ 9
biv-chain[2]: c8n3{r2 r6} - c4n3{r6 r1} ==> r2c5 ≠ 3
singles ==> r2c5 = 4, r8c5 = 3, r8c6 = 4, r1c1 = 4, r1c3 = 9
biv-chain[3]: r6c8{n3 n7} - r4c9{n7 n9} - b5n9{r4c6 r6c4} ==> r6c4 ≠ 3
stte
It is likely that some of these steps can be skipped.
2) 1-step solutionThere is no W1-anti-backdoor and therefore no solution with only one elimination.
(This doesn't mean there can't be any 1-step solution with a pattern making several eliminations at a time, but this restricts the possibilities.)
3) 2-step solutionsThere are many 2-step solutions with whips, but they use whips that are absurdly long for such a simple puzzle. Two of the simplest ones are:
- Code: Select all
 whip[5]: r5n3{c2 c7} - r3n3{c7 c3} - c2n3{r2 r8} - c5n3{r8 r2} - b3n3{r2c7 .} ==> r6c1 ≠ 3
whip[7]: r1c4{n3 n7} - c6n7{r1 r9} - r9n3{c6 c9} - c8n3{r8 r2} - r2n7{c8 c9} - r4c9{n7 n9} - r4c6{n9 .} ==> r6c4 ≠ 3
stte
whip[5]: r5n3{c2 c7} - r3n3{c7 c3} - c2n3{r2 r8} - c5n3{r8 r2} - b3n3{r2c7 .} ==> r6c1 ≠ 3
whip[7]: r6c4{n9 n3} - r1c4{n3 n7} - c6n7{r1 r9} - r9n3{c6 c9} - c8n3{r8 r2} - r2n7{c8 c9} - c9n9{r2 .} ==> r4c6 ≠ 9
stte
Hajime wrote:I could not solve this manually in 1 or 2 steps
Considering the above results, it shouldn't be too surprising.
This puzzle is one more example that a 1- or 2- step  requirement often leads to absurdly complex solutions. Puzzles with this requirement have to be designed specially for it, as has been the case for most of those proposed in this section of the forum.