.
- Code: Select all
Resolution state RS1 after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 2345 123 9 ! 1236 8 13 ! 7 125 456 !
! 237 6 127 ! 5 12379 4 ! 1289 129 89 !
! 8 127 12457 ! 1267 1279 19 ! 12469 1259 3 !
+-------------------+-------------------+-------------------+
! 367 4 1678 ! 9 1357 2 ! 38 357 578 !
! 9 12378 1278 ! 1347 13457 135 ! 2348 6 4578 !
! 237 5 27 ! 8 347 6 ! 2349 2379 1 !
+-------------------+-------------------+-------------------+
! 1 2789 25678 ! 23 2359 3589 ! 369 4 679 !
! 47 789 478 ! 134 6 1389 ! 5 1379 2 !
! 2456 29 3 ! 124 12459 7 ! 169 8 69 !
+-------------------+-------------------+-------------------+
193 candidates.
Starting from this point, there is no 1-step solution with whips of reasonable length (length 10 is required).
Continuing the simplest-first solution, we find a few Pairs:
- Code: Select all
hidden-pairs-in-a-block: b7{n5 n6}{r7c3 r9c1} ==> r9c1≠4, r9c1≠2, r7c3≠8, r7c3≠7, r7c3≠2
whip[1]: b7n2{r9c2 .} ==> r1c2≠2, r3c2≠2, r5c2≠2
whip[1]: r9n4{c5 .} ==> r8c4≠4
naked-pairs-in-a-row: r1{c2 c6}{n1 n3} ==> r1c8≠1, r1c4≠3, r1c4≠1, r1c1≠3
hidden-pairs-in-a-block: b3{n4 n6}{r1c9 r3c7} ==> r3c7≠9, r3c7≠2, r3c7≠1, r1c9≠5
whip[1]: c9n5{r5 .} ==> r4c8≠5
hidden-pairs-in-a-block: b1{n4 n5}{r1c1 r3c3} ==> r3c3≠7, r3c3≠2, r3c3≠1, r1c1≠2
whip[1]: b1n2{r2c3 .} ==> r2c5≠2, r2c7≠2, r2c8≠2
whip[1]: c7n2{r6 .} ==> r6c8≠2
hidden-pairs-in-a-column: c8{n2 n5}{r1 r3} ==> r3c8≠9, r3c8≠1
whip[1]: b3n1{r2c8 .} ==> r2c3≠1, r2c5≠1
whip[1]: c3n1{r5 .} ==> r5c2≠1
whip[1]: r3n9{c6 .} ==> r2c5≠9
naked-pairs-in-a-column: c3{r2 r6}{n2 n7} ==> r8c3≠7, r5c3≠7, r5c3≠2, r4c3≠7
hidden-single-in-a-row ==> r5c7=2
- Code: Select all
Resolution state RS2 after Pairs:
+-------------------+-------------------+-------------------+
! 45 13 9 ! 26 8 13 ! 7 25 46 !
! 237 6 27 ! 5 37 4 ! 189 19 89 !
! 8 17 45 ! 1267 1279 19 ! 46 25 3 !
+-------------------+-------------------+-------------------+
! 367 4 168 ! 9 1357 2 ! 38 37 578 !
! 9 378 18 ! 1347 13457 135 ! 2 6 4578 !
! 237 5 27 ! 8 347 6 ! 349 379 1 !
+-------------------+-------------------+-------------------+
! 1 2789 56 ! 23 2359 3589 ! 369 4 679 !
! 47 789 48 ! 13 6 1389 ! 5 1379 2 !
! 56 29 3 ! 124 12459 7 ! 169 8 69 !
+-------------------+-------------------+-------------------+
152 candidates
From this point on, there's an elementary solution in BC3:
- Code: Select all
biv-chain[2]: r2n3{c5 c1} - c2n3{r1 r5} ==> r5c5≠3
biv-chain[3]: r6n9{c7 c8} - r2c8{n9 n1} - b9n1{r8c8 r9c7} ==> r9c7≠9
biv-chain[3]: r7c3{n6 n5} - r3c3{n5 n4} - r3c7{n4 n6} ==> r7c7≠6
biv-chain[3]: r9c1{n6 n5} - r1c1{n5 n4} - r1c9{n4 n6} ==> r9c9≠6
stte
Starting from RS2, it's also easy to find a 1-step solution with slightly less unreasonable patterns:
- Code: Select all
z-chain[7]: r1n4{c9 c1} - c1n5{r1 r9} - r9n6{c1 c7} - b9n1{r9c7 r8c8} - b9n3{r8c8 r7c7} - r7c4{n3 n2} - r1c4{n2 .} ==> r1c9≠6
stte
- Code: Select all
whip-rc[7]: r9c1{n6 n5} - r1c1{n5 n4} - r1c9{n4 n6} - r9c9{n6 n9} - r7c7{n9 n3} - r7c4{n3 n2} - r1c4{n2 .} ==> r7c3≠6
stte
But now, let me ask two questions:
- what's the meaning of asking for a 1-step solution (starting from RS2) when 41 candidates have already been eliminated by a series of Pairs?
- who can seriously prefer a z-chain[7], a whip[7] in rc-space or any of the other hyper-complicated solutions proposed above, when a solution with bivalue-chains[3] is available?