Hello tso,
I just solved your example by forcing chains.
the point where it gets interesting:
8 4679 679 2 46 5 3467 369 1
2457 245679 679 1 8 3 4567 2569 2467
1 2456 3 469 7 49 8 256 246
6 3 4 8 2 1 9 7 5
57 57 8 3469 346 49 2 1 36
9 1 2 36 5 7 36 4 8
247 2467 5 34 9 8 1 236 23467
24 2489 19 7 134 6 345 2358 234
3 4678 167 5 14 2 467 68 9
let a-k without j denote rows, 1-9 columns:
k8=6 or k8=8, h2=8, h3=9, k3=1 > k3 != 6 > abc2 != 6
k8=6 or k8=8, h2=8, h3=9, k3=1, k5=4, a5=6, b3=6, e5=3, e9=6, c8=6 > ab8!=6, g89!=6 > g2=6
f4=6 or f4=3, e9=3, g4=4, f7=6, k8=6, h8=8, h5=3, g8=3, h19=24, h2=9, a8=9, b3=9, a3=6, c4=6 > e4!=6
c4=6 or a5=6, b3=6, f4=6, e9=6 > c9!=6
b9=6 or e9=6, f4=6, a5=6, b3=6, c8=6 > ab7!=6
c9=2 or c9=4, a5=4, e5=6, e9=3, h9=2 > bg9!=2
f4=3 or f4=6, f7=3, a8=3, a5=6, c9=2, c8=6, g8=2, h8=5, h7=4, h9=3, g4=3, e5=3 > e4!=3
e46=49 > e5!=4
g8=2 or g8=3, g4=4, g9=7, g1=2, h1=4, k7=4, e9=3, b9=6, c9=4, h9=2 > h8!=2
k7=6 or k8=6, b9=6, g9=7 > k7!=7 > g9=7
gh1=24 > b1=57, hk2!=24
g8=3 or g8=2, g1=4, g4=3, e5=3, f7=3, a8=3, h9=3 > h78!=3
naked quad hk78=4568 > h9!=4 > ab7!=4
b17=57
naked triple abg8=239 > c8!=2
c9=4 or c9=2, h9=3, g4=3, f4=6, c46=49 > c2!=4
a7=7 or b7=7, c8=5, b9=6, a3=6 > a3!=7 > k3=7 and the remaining numbers fall into place.
Sure, I grant that the unique rectangle was tempting in plain view and much shorter of course, and normally I would not refrain from taking advantage of it, I only wanted to give you a proof of concept...
Kind regards, Maria