.
Thanks for your solution.
There's an OR3-anti-tridagon at the start (after whips[1]), but a guardian is eliminated before it is used (as an OR2-anti-tridagon).
- Code: Select all
OR3-anti-tridagon[12] for digits 5, 6 and 9 in blocks:
b5, with cells: r4c4, r5c5, r6c6
b6, with cells: r4c7, r5c8, r6c9
b8, with cells: r8c4, r9c5, r7c6
b9, with cells: r8c7, r9c9, r7c8
with 3 guardians: n7r6c6 n8r6c6 n1r8c7
z-chain[4]: r7n7{c2 c3} - r7n3{c3 c1} - r2n3{c1 c9} - c9n1{r2 .} ==> r7c2≠1
whip[1]: b7n1{r8c3 .} ==> r5c3≠1, r6c3≠1
z-chain[4]: r7n7{c3 c2} - r7n3{c2 c1} - r2n3{c1 c9} - c9n1{r2 .} ==> r7c3≠1
hidden-single-in-a-block ==> r8c3=1
At least one candidate of a previous Trid-OR3-relation has just been eliminated.
There remains a Trid-OR2-relation between candidates: n7r6c6 n8r6c6
+----------------------+----------------------+----------------------+
! 1 23 34 ! 24569 569 569 ! 7 8 34569 !
! 234 5 6 ! 2479 8 79 ! 149 29 1349 !
! 7 9 8 ! 2456 1 3 ! 456 256 456 !
+----------------------+----------------------+----------------------+
! 235689 236 359 ! 569 4 5689 ! 569 1 7 !
! 4569 167 4579 ! 15679 569 2 ! 3 569 8 !
! 5689 167 579 ! 15679 3 56789 ! 2 4 569 !
+----------------------+----------------------+----------------------+
! 3569 367 3579 ! 8 2 569 ! 14569 569 14569 !
! 569 8 159 ! 569 7 4 ! 569 3 2 !
! 569 4 2 ! 3 569 1 ! 8 7 569 !
+----------------------+----------------------+----------------------+
Main step:
Trid-OR2-whip[1]: OR2{{n8r6c6 n7r6c6 | .}} ==> r6c6≠9, r6c6≠6, r6c6≠5After that, there's an easy solution in W5:
- Code: Select all
hidden-pairs-in-a-block: b9{n1 n4}{r7c7 r7c9} ==> r7c9≠9, r7c9≠6, r7c9≠5, r7c7≠9, r7c7≠6, r7c7≠5
biv-chain[4]: c1n2{r2 r4} - b4n8{r4c1 r6c1} - r6c6{n8 n7} - b2n7{r2c6 r2c4} ==> r2c4≠2
z-chain[4]: r1c3{n4 n3} - r1c2{n3 n2} - c4n2{r1 r3} - r3n4{c4 .} ==> r1c9≠4
z-chain[4]: r2n3{c9 c1} - r1c2{n3 n2} - c4n2{r1 r3} - r3n4{c4 .} ==> r2c9≠4
z-chain[4]: b7n9{r9c1 r7c3} - c8n9{r7 r2} - r2n2{c8 c1} - c1n4{r2 .} ==> r5c1≠9
t-whip[4]: r3n2{c4 c8} - r2c8{n2 n9} - r2c6{n9 n7} - r2c4{n7 .} ==> r3c4≠4
whip[1]: r3n4{c9 .} ==> r2c7≠4
biv-chain[5]: c1n2{r2 r4} - b4n8{r4c1 r6c1} - r6c6{n8 n7} - b2n7{r2c6 r2c4} - r2n4{c4 c1} ==> r2c1≠3
singles ==> r2c9=3, r2c7=1, r7c7=4, r7c9=1, r3c9=4
naked-triplets-in-a-row: r1{c5 c6 c9}{n5 n6 n9} ==> r1c4≠9, r1c4≠6, r1c4≠5
biv-chain[3]: c1n3{r7 r4} - r4n2{c1 c2} - r1c2{n2 n3} ==> r7c2≠3
hidden-pairs-in-a-column: c2{n2 n3}{r1 r4} ==> r4c2≠6
biv-chain[5]: b4n8{r4c1 r6c1} - r6c6{n8 n7} - r2c6{n7 n9} - r2c8{n9 n2} - c1n2{r2 r4} ==> r4c1≠3, r4c1≠5, r4c1≠6, r4c1≠9
hidden-single-in-a-column ==> r7c1=3
biv-chain[5]: b2n7{r2c4 r2c6} - r6c6{n7 n8} - r4n8{c6 c1} - c1n2{r4 r2} - r2n4{c1 c4} ==> r2c4≠9
finned-x-wing-in-columns: n9{c7 c4}{r8 r4} ==> r4c6≠9
whip[5]: r2n9{c8 c6} - r7n9{c6 c3} - b4n9{r4c3 r6c1} - r6n8{c1 c6} - c6n7{r6 .} ==> r5c8≠9
biv-chain[5]: b4n3{r4c3 r4c2} - b4n2{r4c2 r4c1} - r2n2{c1 c8} - c8n9{r2 r7} - c7n9{r8 r4} ==> r4c3≠9
biv-chain[3]: r4c3{n5 n3} - r1c3{n3 n4} - b4n4{r5c3 r5c1} ==> r5c1≠5
biv-chain[4]: c8n2{r3 r2} - r2c1{n2 n4} - r5c1{n4 n6} - r5c8{n6 n5} ==> r3c8≠5
z-chain[3]: c8n5{r5 r7} - c6n5{r7 r1} - b3n5{r1c9 .} ==> r4c7≠5
z-chain[4]: r5c8{n6 n5} - r5c5{n5 n9} - r4n9{c4 c7} - r4n6{c7 .} ==> r5c4≠6
whip[4]: r4n6{c6 c7} - r4n9{c7 c4} - r5c5{n9 n5} - r5c8{n5 .} ==> r6c4≠6
z-chain[5]: r4n5{c6 c3} - c3n3{r4 r1} - c3n4{r1 r5} - r5c1{n4 n6} - r5c8{n6 .} ==> r5c4≠5, r5c5≠5
t-whip[3]: r5c5{n9 n6} - r4n6{c6 c7} - b6n9{r4c7 .} ==> r6c4≠9
t-whip[3]: r5c5{n9 n6} - r4n6{c6 c7} - r4n9{c7 .} ==> r5c4≠9
x-wing-in-columns: n9{c4 c7}{r4 r8} ==> r8c1≠9
biv-chain[2]: b7n9{r9c1 r7c3} - r5n9{c3 c5} ==> r9c5≠9
biv-chain[3]: c4n9{r8 r4} - r5c5{n9 n6} - r9c5{n6 n5} ==> r8c4≠5
biv-chain[3]: r8n5{c1 c7} - r3n5{c7 c4} - c5n5{r1 r9} ==> r9c1≠5
z-chain[5]: b3n5{r3c7 r1c9} - b3n9{r1c9 r2c8} - b9n9{r7c8 r9c9} - b7n9{r9c1 r7c3} - b7n5{r7c3 .} ==> r8c7≠5
singles ==> r3c7=5, r8c1=5
whip[1]: c4n5{r6 .} ==> r4c6≠5
finned-x-wing-in-rows: n6{r3 r8}{c4 c8} ==> r7c8≠6
biv-chain[3]: r9c5{n6 n5} - r7n5{c6 c8} - r5c8{n5 n6} ==> r5c5≠6
singles ==> r5c5=9, r8c4=9, r8c7=6, r4c7=9
finned-swordfish-in-columns: n6{c5 c9 c1}{r9 r1 r6} ==> r6c2≠6
biv-chain[3]: r9n6{c5 c1} - r6n6{c1 c9} - c9n5{r6 r9} ==> r9c5≠5
stte