This puzzle can be solved as usual (here, with tridagon + 2 impossible patterns + chains of length ≤ 7).
But a different game can be to find as many impossible patterns as possible.
- Code: Select all
+-------+-------+-------+
! 1 2 . ! . . . ! . 8 9 !
! . 5 . ! 1 . 9 ! 2 . 6 !
! . . . ! 2 . . ! 5 1 . !
+-------+-------+-------+
! . . . ! 6 . 8 ! . . 5 !
! . . . ! 9 1 . ! . 2 . !
! . . 8 ! . . . ! . 6 . !
+-------+-------+-------+
! 7 3 . ! . . . ! . 5 1 !
! . . 6 ! 5 9 . ! . . . !
! . 4 . ! . . . ! . . . !
+-------+-------+-------+
12.....89.5.1.92.6...2..51....6.8..5...91..2...8....6.73.....51..659.....4.......;21225;440648
SER =
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 1 2 347 ! 347 34567 34567 ! 347 8 9 !
! 348 5 347 ! 1 3478 9 ! 2 347 6 !
! 34689 6789 3479 ! 2 3478 347 ! 5 1 347 !
+----------------------+----------------------+----------------------+
! 2349 179 123479 ! 6 2347 8 ! 13479 3479 5 !
! 3456 67 3457 ! 9 1 3457 ! 3478 2 3478 !
! 23459 179 8 ! 347 23457 23457 ! 13479 6 347 !
+----------------------+----------------------+----------------------+
! 7 3 29 ! 48 246 246 ! 4689 5 1 !
! 28 18 6 ! 5 9 12347 ! 3478 347 23478 !
! 2589 4 1259 ! 378 2367 12367 ! 36789 379 2378 !
+----------------------+----------------------+----------------------+
199 candidates.