#8323 in 63,137 T&E(3) min-expands

Post puzzles for others to solve here.

#8323 in 63,137 T&E(3) min-expands

Postby denis_berthier » Sat Jan 28, 2023 6:21 am

.
Code: Select all
+-------+-------+-------+
! . . . ! 4 . 6 ! 7 8 . !
! . . . ! 1 8 . ! . 6 3 !
! 6 8 . ! . 3 7 ! . . . !
+-------+-------+-------+
! 2 . 8 ! . . 3 ! . . . !
! . 7 1 ! . . . ! 6 . 8 !
! 9 6 . ! 8 . . ! . . . !
+-------+-------+-------+
! . . . ! 3 . 8 ! . 4 6 !
! . . 6 ! . 4 . ! . 1 . !
! . . 4 ! . . 1 ! . . 7 !
+-------+-------+-------+
...4.678....18..6368..37...2.8..3....71...6.896.8........3.8.46..6.4..1...4..1..7;1950;10679
SER = 11.7


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 135   12359 2359  ! 4     259   6     ! 7     8     259   !
   ! 457   2459  2579  ! 1     8     259   ! 259   6     3     !
   ! 6     8     259   ! 259   3     7     ! 12459 259   12459 !
   +-------------------+-------------------+-------------------+
   ! 2     45    8     ! 5679  15679 3     ! 1459  579   1459  !
   ! 345   7     1     ! 259   259   2459  ! 6     2359  8     !
   ! 9     6     35    ! 8     1257  245   ! 12345 2357  1245  !
   +-------------------+-------------------+-------------------+
   ! 157   1259  2579  ! 3     2579  8     ! 259   4     6     !
   ! 3578  2359  6     ! 2579  4     259   ! 23589 1     259   !
   ! 358   2359  4     ! 2569  2569  1     ! 23589 2359  7     !
   +-------------------+-------------------+-------------------+
180 candidates.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #8323 in 63,137 T&E(3) min-expands

Postby totuan » Sun Jan 29, 2023 9:02 am

Code: Select all
 *--------------------------------------------------------------------*
 | 135    12359  2359   | 4     *259    6      | 7      8     *259    |
 | 457    2459   2579   | 1      8     *259    |*259    6      3      |
 | 6      8      259    |*259    3      7      | 14    *259    14     |
 |----------------------+----------------------+----------------------|
 | 2      45     8      | 67     167    3      | 1459   579    1459   |
 | 345    7      1      | 259    259    2459   | 6      235    8      |
 | 9      6      35     | 8      17     245    | 12345  2357   1245   |
 |----------------------+----------------------+----------------------|
 | 157    1259   2579   | 3     *2579   8      |*259    4      6      |
 | 3578   2359   6      | 2579   4     *259    | 23589  1     *259    |
 | 358    2359   4      |*2569   2569   1      | 23589 *2359   7      |
 *--------------------------------------------------------------------*

My path for this one:
For this one, Tridagon (259)B2389 - * marked cells, with three guardians 7r7c5, 6r9c4, 3r9c8. Based on guardians then can solve r2c3=7 but the puzzle is still hard (ER-9.4).
My path combines Tridagon & Impossible pattern then the puzzle is downgrade faster.
Code: Select all
 *--------------------------------------------------------------------*
 | 135    12359 *2359   | 4     *259    6      | 7      8     *259    |
 | 457    2459   2579   | 1      8     *259    |*259    6      3      |
 | 6      8     *259    |*259    3      7      | 14    *259    14     |
 |----------------------+----------------------+----------------------|
 | 2      45     8      | 67     167    3      | 1459   579    1459   |
 | 345    7      1      | 259    259    2459   | 6      235    8      |
 | 9      6      5-3    | 8      17     245    | 12345  2357   1245   |
 |----------------------+----------------------+----------------------|
 | 157    1259  *2579   | 3      2579   8      |*259    4      6      |
 | 3578   2359   6      |*2579   4     *259    | 23589  1     *259    |
 | 358    2359   4      | 2569  *2569   1      | 23589 *2359   7      |
 *--------------------------------------------------------------------*

Impossible pattern (259) * marked cells => (3)r1c3=(3)r9c8=(7)r7c3=(7)r8c4=(6)r9r5
Note that: 7r7c3/r8c4 or 6r9c5 can kill guardians 7r7c5 & 6r9c4 of Tridagon by (67)B58

Code: Select all
 *-----------------------------------------------------------*
 | .     .     259   | .    A259   .     | .     .     259   |
 | .     .     .     | .     .     259   | 259   .     .     |
 | .     .     259   | 259   .     .     | .     259   .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     259   | .     .     .     | 259   .     .     |
 | .     .     .     | 259   .     259   | .     .     259   |
 | .     .     .     | .     259   .     | .     259   .     |
 *-----------------------------------------------------------*
A=(2|5|9) => impossible

Impossible pattern combines tridagon:
01: Present as diagram: => r6c3<>3, some singles. The puzzle is now ER-7.1

Code: Select all
(6)r9c5--(6=17)r46c5----------------------------------
 ||     |                                             |
 ||      --------------------------                   |
 ||                                |                  |
(7)r7c3/r8c4--r7c5=r46c5-(7=6)r4c4---(6)r9c4          |
 ||          |                        ||              |
(3)r1c3*      -----------------------(7)r7c5----------
 ||                                   ||
(3)r9c8-r56c8=r6c7*                  (3)r9c8-r56c8=r6c7*

Code: Select all
 *--------------------------------------------------------------------*
 | 15     1259   3      | 4      259    6      | 7      8      259    |
 | 4      259    7      | 1      8      59     | 259    6      3      |
 | 6      8      29     | 259    3      7      |*14     59    *14     |
 |----------------------+----------------------+----------------------|
 | 2      4      8      | 67     167    3      | 159    579    59     |
 | 3      7      1      | 59     59     4      | 6      2      8      |
 | 9      6      5      | 8      17     2      |*14+3   37    *14     |
 |----------------------+----------------------+----------------------|
 | 157    1259   29     | 3      2579   8      | 259    4      6      |
 | 578    2359   6      | 2579   4      59     | 23589  1      259    |
 | 58     2359   4      | 2569   2569   1      | 23589  359    7      |
 *--------------------------------------------------------------------*

02: UR (14)r36c79 => r6c7=3, some singles

Code: Select all
 *-----------------------------------------------------------*
 | 15    1259  3     | 4     259   6     | 7     8     59-2  |
 | 4     259   7     | 1     8    *59    |*259   6     3     |
 | 6     8     29    | 259   3     7     | 4    *59    1     |
 |-------------------+-------------------+-------------------|
 | 2     4     8     | 67    67    3     | 1    *59   *59    |
 | 3     7     1     | 59    59    4     | 6     2     8     |
 | 9     6     5     | 8     1     2     | 3     7     4     |
 |-------------------+-------------------+-------------------|
 | 157   1259  29    | 3     2579  8     | 59-2  4     6     |
 | 578   3     6     | 2579  4    *59    | 589-2 1    *259   |
 | 58    259   4     | 2569  2569  1     | 589-2 3     7     |
 *-----------------------------------------------------------*

03: oddagon (59) * marked cells => (2)r2c7=(2)r8c9 => r2c7=2, r8c9=2

Code: Select all
 *-----------------------------------------------------------*
 | 15   a1259  3     | 4     259   6     | 7     8     59    |
 | 4     59    7     | 1     8     59    | 2     6     3     |
 | 6     8    b29    |c259   3     7     | 4     59    1     |
 |-------------------+-------------------+-------------------|
 | 2     4     8     | 67    67    3     | 1     59    59    |
 | 3     7     1     | 59    59    4     | 6     2     8     |
 | 9     6     5     | 8     1     2     | 3     7     4     |
 |-------------------+-------------------+-------------------|
 | 157   1259  29    | 3     2579  8     | 59    4     6     |
 | 578   3     6     | 579   4     59    | 589   1     2     |
 | 58    59-2  4     |d2569  2569  1     | 589   3     7     |
 *-----------------------------------------------------------*

04: 2’s abcd => r9c2<>2

Code: Select all
 *--------------------------------------------------*
 |a15  f2-1  3    | 4   e259  6    | 7    8    59   |
 | 4    59   7    | 1    8    59   | 2    6    3    |
 | 6    8    29   | 259  3    7    | 4    59   1    |
 |----------------+----------------+----------------|
 | 2    4    8    | 67  d67   3    | 1    59   59   |
 | 3    7    1    | 59   59   4    | 6    2    8    |
 | 9    6    5    | 8    1    2    | 3    7    4    |
 |----------------+----------------+----------------|
 |b157  12   29   | 3   c579  8    | 59   4    6    |
 | 578  3    6    | 579  4    59   | 589  1    2    |
 | 58   59   4    | 26  d26   1    | 589  3    7    |
 *--------------------------------------------------*

05: (1)r1c1=(1-7)r7c1=r7c5-(67=2)r46c5-r1c5=r1c2 => r1c2<>1, stte

Thanks for the puzzle!
totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: #8323 in 63,137 T&E(3) min-expands

Postby denis_berthier » Tue Jan 31, 2023 7:22 am

.
No one has a solution with RT?
.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #8323 in 63,137 T&E(3) min-expands

Postby DEFISE » Tue Jan 31, 2023 1:26 pm

Hi Denis,
I have a solution in W10 + OR3-W6 without UR, RT and 2nd impossible pattern.
You must have it too.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: #8323 in 63,137 T&E(3) min-expands

Postby marek stefanik » Tue Jan 31, 2023 2:29 pm

The main TH loses its potential RTs when you place 7r7c5, after which the puzzle is just 9.0 skfr, but not over.
There is another TH where the RTs are useful, which you can find in totuan's solution (a bit concealed by the impossible pattern):
Code: Select all
 *-----------------------------------------------------------*
 | .     .     259   | .    #259   .     | .     .    #259   |
 | .     .     .     | .     .   *#259   |*#259  .     .     |
 | .     .     259   |#259   .     .     | .    #259   .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     259   | .     .     #     |*#259  .     .     |
 | .     .     .     |#259   .     259   | .     .    #259   |
 | .     .     .     | .    #259   .     | .    #259   .     |
 *-----------------------------------------------------------*
TH 259# without a rectangle cell => RT 259*
The remaining 2|5|9 in r2 is in r2c12, in c3 takes r7c3 and is eliminated out of the RT, i.e. contra.

Marek
marek stefanik
 
Posts: 359
Joined: 05 May 2021

Re: #8323 in 63,137 T&E(3) min-expands

Postby denis_berthier » Tue Jan 31, 2023 3:08 pm

DEFISE wrote:Hi Denis,
I have a solution in W10 + OR3-W6 without UR, RT and 2nd impossible pattern.
You must have it too.

I François,
Actually, in the same conditions, I have one in W10+OR3W8
With eleven's pattern #97-15clues, I have one in W5+0R4W5
Last edited by denis_berthier on Wed Feb 01, 2023 4:58 am, edited 2 times in total.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #8323 in 63,137 T&E(3) min-expands

Postby DEFISE » Tue Jan 31, 2023 6:10 pm

Finally I implemented the ORk-whips, it's kind of fun.

After basics :
Code: Select all
|-----------------------------------------------------------|
| 135   12359 2359  | 4     259   6     | 7     8     259   |
| 457   2459  2579  | 1     8     259   | 259   6     3     |
| 6     8     259   | 259   3     7     | 14    259   14    |
|-----------------------------------------------------------|
| 2     45    8     | 67    167   3     | 1459  579   1459  |
| 345   7     1     | 259   259   2459  | 6     235   8     |
| 9     6     35    | 8     17    245   | 12345 2357  1245  |
|-----------------------------------------------------------|
| 157   1259  2579  | 3     2579  8     | 259   4     6     |
| 3578  2359  6     | 2579  4     259   | 23589 1     259   |
| 358   2359  4     | 2569  2569  1     | 23589 2359  7     |
|-----------------------------------------------------------|


Tridagon (2,5,9) in b2p267,b3p348,b8p267,b9p168
with 3 guardians: 7r7c5,6r9c4,3r9c8

whip[3]: r4n5{c8 c2}- r6c3{n5 n3}- r5n3{c1 .} => -5r5c8
whip[8]: c7n8{r9 r8}- c7n3{r8 r6}- r5c8{n3 n2}- c9n2{r6 r1}- c5n2{r1 r7}- r8n2{c4 c2}- r8n3{c2 c1}- r5n3{c1 .} => -2r9c7

Trid-OR3-whip[6]: r4c4{n7 n6}- OR3{{n7r7c5,n6r9c4 | n3r9c8}}- r5c8{n3 n2}- r6c8{n2 n5}- r6c3{n5 n3}- r5n3{c1 .} => -7r6c5
Single(s): 1r6c5, 7r6c8
Trid-OR3-whip[5]: r8n7{c1 c4}- r4c4{n7 n6}- OR3{{ n7r7c5,n6r9c4 | n3r9c8}}- r5n3{c8 c1}- c1n4{r5 .} => -7r2c1
Single(s): 7r2c3
Trid-OR3-whip[4]: r8n7{c1 c4}- r4c4{n7 n6}- OR3{{ n7r7c5,n6r9c4 | n3r9c8}}- r5n3{c8 .} => -3r8c1
Trid-OR3-ctr-whip[4]: r8n8{c7 c1}- r8n7{c1 c4}- r4c4{n7 n6}- OR3{{all guardians |.}} => -3r8c7

Single(s): 3r8c2

Code: Select all
|--------------------------------------------------|
| 135  1259 2359 | 4    259  6    | 7    8    259  |
| 45   2459 7    | 1    8    259  | 259  6    3    |
| 6    8    259  | 259  3    7    | 14   259  14   |
|--------------------------------------------------|
| 2    45   8    | 67   67   3    | 1459 59   1459 |
| 345  7    1    | 259  259  2459 | 6    23   8    |
| 9    6    35   | 8    1    245  | 2345 7    245  |
|--------------------------------------------------|
| 157  1259 259  | 3    2579 8    | 259  4    6    |
| 578  3    6    | 2579 4    259  | 2589 1    259  |
| 58   259  4    | 2569 2569 1    | 3589 2359 7    |
|--------------------------------------------------|


Now it’s solvable with "Simplest first" in W10 but I used my "Few steps" to reduce the number of steps:

Hidden Text: Show
whip[7]: r7n7{c5 c1}- c1n1{r7 r1}- r1n3{c1 c3}- r6n3{c3 c7}- r5c8{n3 n2}- c4n2{r5 r3}- c3n2{r3 .} => -2r7c5
whip[10]: r4c5{n6 n7}- r7n7{c5 c1}- r7n1{c1 c2}- r1n1{c2 c1}- c1n3{r1 r5}- r5c8{n3 n2}- c5n2{r5 r1}- r3n2{c4 c3}- r2n2{c2 c7}- r7n2{c7 .} => -6r9c5
Single(s): 6r9c4, 7r4c4, 6r4c5, 7r8c1, 7r7c5, 8r8c7, 8r9c1
whip[7]: r4n5{c9 c2}- r6c3{n5 n3}- r5c1{n3 n4}- r2c1{n4 n5}- c3n5{r1 r7}- c7n5{r7 r9}- c7n3{r9 .} => -5r6c9
whip[10]: r5n4{c6 c1}- r2c1{n4 n5}- r2c6{n5 n2}- r8c6{n2 n5}- r6c6{n5 n4}- r6c9{n4 n2}- r8c9{n2 n9}- r1c9{n9 n5}- r1c5{n5 n9}- c4n9{r3 .} => -9r5c6
whip[8]: r7n2{c2 c7}- r2n2{c7 c6}- c6n9{r2 r8}- r8c9{n9 n5}- r9n5{c7 c5}- r1c5{n5 n9}- r1c9{n9 n2}- r6n2{c9 .} => -2r9c2
Box/Line: 2b7r7 => -2r7c7
whip[9]: r9c2{n5 n9}- r7n9{c2 c7}- r2n9{c7 c6}- r1c5{n9 n2}- r3c4{n2 n5}- r8n5{c4 c9}- r1c9{n5 n9}- r3c8{n9 n2}- r9n2{c8 .} => -5r9c5
Box/Line: 5b8r8 => -5r8c9
whip[6]: r7c7{n9 n5}- r9n5{c7 c2}- r4c2{n5 n4}- r2n4{c2 c1}- r2n5{c1 c6}- c6n9{r2 .} => -9r8c9
Single(s): 2r8c9, 4r6c9, 1r3c9, 4r3c7, 1r4c7, 4r4c2, 4r2c1, 4r5c6, 2r9c5
Box/Line: 2r1b1 => -2r2c2 -2r3c3
Box/Line: 5r4b6 => -5r6c7
Naked pairs: 59r1c59 => -5r1c1 -5r1c2 -9r1c2 -5r1c3 -9r1c3
Naked pairs: 59c2r29 => -5r7c2 -9r7c2
whip[4]: r7n5{c1 c7}- r2n5{c7 c6}- r6n5{c6 c3}- c1n5{r5 .} => -5r9c2
STTE


Denis, we don't get the same because I didn't follow a global Simplest-first logic, for example I used a whip[8] from the start. My resolution is not entirely automatic.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: #8323 in 63,137 T&E(3) min-expands

Postby denis_berthier » Wed Feb 01, 2023 4:57 am

.
Thanks for your solutions. The one below will use two impossible patterns: tridagon and eleven #87 in his 15-clue list

"Standard" start, with an anti-tridagon with 3 guardians:

Code: Select all
hidden-pairs-in-a-row: r3{n1 n4}{c7 c9} ==> r3c9≠9, r3c9≠5, r3c9≠2, r3c7≠9, r3c7≠5, r3c7≠2
hidden-triplets-in-a-block: b5{n1 n6 n7}{r6c5 r4c5 r4c4} ==> r6c5≠5, r6c5≠2, r4c5≠9, r4c5≠5, r4c4≠9, r4c4≠5
whip[1]: r4n9{c9 .} ==> r5c8≠9
   +-------------------+-------------------+-------------------+
   ! 135   12359 2359  ! 4     259   6     ! 7     8     259   !
   ! 457   2459  2579  ! 1     8     259   ! 259   6     3     !
   ! 6     8     259   ! 259   3     7     ! 14    259   14    !
   +-------------------+-------------------+-------------------+
   ! 2     45    8     ! 67    167   3     ! 1459  579   1459  !
   ! 345   7     1     ! 259   259   2459  ! 6     235   8     !
   ! 9     6     35    ! 8     17    245   ! 12345 2357  1245  !
   +-------------------+-------------------+-------------------+
   ! 157   1259  2579  ! 3     2579  8     ! 259   4     6     !
   ! 3578  2359  6     ! 2579  4     259   ! 23589 1     259   !
   ! 358   2359  4     ! 2569  2569  1     ! 23589 2359  7     !
   +-------------------+-------------------+-------------------+

OR3-anti-tridagon[12] for digits 2, 9 and 5 in blocks:
        b2, with cells: r1c5, r2c6, r3c4
        b3, with cells: r1c9, r2c7, r3c8
        b8, with cells: r7c5, r8c6, r9c4
        b9, with cells: r7c7, r8c9, r9c8
with 3 guardians: n7r7c5 n6r9c4 n3r9c8


There are also several instances of eleven's pattern, with various numbers of guardians. They are not all useful; I keep them only for completeness.

Code: Select all
OR7-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b9, with cells: r9c8, r7c7, r8c9
        b2, with cells: r3c4, r2c6, r1c5
        b3, with cells: r3c8, r2c7, r1c9
   2-cell blocks:
        b7, with cells: r7c3, r8c2
        b8, with cells: r9c5, r8c4
        b1, with cells: r2c2, r1c3
with 7 guardians: n3r1c3 n4r2c2 n7r7c3 n3r8c2 n7r8c4 n6r9c5 n3r9c8

OR5-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b9, with cells: r8c9, r9c8, r7c7
        b2, with cells: r1c5, r3c4, r2c6
        b3, with cells: r1c9, r3c8, r2c7
   2-cell blocks:
        b7, with cells: r9c2, r7c3
        b8, with cells: r8c6, r7c5
        b1, with cells: r3c3, r2c2
with 5 guardians: n4r2c2 n7r7c3 n7r7c5 n3r9c2 n3r9c8

OR6-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b9, with cells: r8c9, r7c7, r9c8
        b2, with cells: r1c5, r2c6, r3c4
        b3, with cells: r1c9, r2c7, r3c8
   2-cell blocks:
        b7, with cells: r7c3, r9c2
        b8, with cells: r8c4, r9c5
        b1, with cells: r2c2, r3c3
with 6 guardians: n4r2c2 n7r7c3 n7r8c4 n3r9c2 n6r9c5 n3r9c8

OR6-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b8, with cells: r8c6, r9c4, r7c5
        b3, with cells: r2c7, r3c8, r1c9
        b2, with cells: r2c6, r3c4, r1c5
   2-cell blocks:
        b7, with cells: r9c2, r7c3
        b9, with cells: r8c9, r7c7
        b1, with cells: r3c3, r1c2
with 6 guardians: n1r1c2 n3r1c2 n7r7c3 n7r7c5 n3r9c2 n6r9c4

OR7-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b2, with cells: r2c6, r3c4, r1c5
        b9, with cells: r8c9, r9c8, r7c7
        b8, with cells: r8c6, r9c4, r7c5
   2-cell blocks:
        b1, with cells: r3c3, r1c2
        b3, with cells: r2c7, r1c9
        b7, with cells: r9c2, r7c3
with 7 guardians: n1r1c2 n3r1c2 n7r7c3 n7r7c5 n3r9c2 n6r9c4 n3r9c8

OR6-anti-eleven#97[15] for digits 2, 9 and 5
   anti-block: 4
   anti-column: 1
   3-cell blocks:
        b3, with cells: r1c9, r3c8, r2c7
        b8, with cells: r8c6, r9c4, r7c5
        b9, with cells: r8c9, r9c8, r7c7
   2-cell blocks:
        b1, with cells: r3c3, r2c2
        b2, with cells: r1c5, r2c6
        b7, with cells: r9c2, r7c3
with 6 guardians: n4r2c2 n7r7c3 n7r7c5 n3r9c2 n6r9c4 n3r9c8


The first tridagon eliminations:
z-chain[3]: b5n5{r5c6 r6c6} - r6c3{n5 n3} - r5n3{c1 .} ==> r5c8≠5
Trid-OR3-whip[3]: r6n7{c8 c5} - OR3{{n7r7c5 n3r9c8 | n6r9c4}} - r4c4{n6 .} ==> r6c8≠3
Trid-OR3-whip[4]: c1n8{r9 r8} - r8n7{c1 c4} - OR3{{n7r7c5 n3r9c8 | n6r9c4}} - r4c4{n6 .} ==> r9c1≠3
Trid-OR3-whip[4]: r8n8{c7 c1} - r8n7{c1 c4} - OR3{{n7r7c5 n3r9c8 | n6r9c4}} - r4c4{n6 .} ==> r8c7≠3

whip[1]: b9n3{r9c8 .} ==> r9c2≠3
Trid-OR3-whip[4]: r8n7{c1 c4} - r4c4{n7 n6} - OR3{{n6r9c4 n7r7c5 | n3r9c8}} - r5n3{c8 .} ==> r8c1≠3
hidden-single-in-a-block ==> r8c2=3

Code: Select all
+-------------------+-------------------+-------------------+
! 135   1259  2359  ! 4     259   6     ! 7     8     259   !
! 457   2459  2579  ! 1     8     259   ! 259   6     3     !
! 6     8     259   ! 259   3     7     ! 14    259   14    !
+-------------------+-------------------+-------------------+
! 2     45    8     ! 67    167   3     ! 1459  579   1459  !
! 345   7     1     ! 259   259   2459  ! 6     23    8     !
! 9     6     35    ! 8     17    245   ! 12345 257   1245  !
+-------------------+-------------------+-------------------+
! 157   1259  2579  ! 3     2579  8     ! 259   4     6     !
! 578   3     6     ! 2579  4     259   ! 2589  1     259   !
! 58    259   4     ! 2569  2569  1     ! 23589 2359  7     !
+-------------------+-------------------+-------------------+


The above eliminations lead to a chain of trivial reductions of the EL97-ORk-relations (I've postponed them all until now):

Code: Select all
At least one candidate of a previous El97-OR5-relation has been eliminated.
There remains a El97-OR4-relation between candidates: n4r2c2 n7r7c3 n7r7c5 n3r9c8

At least one candidate of a previous El97-OR6-relation has been eliminated.
There remains a El97-OR5-relation between candidates: n4r2c2 n7r7c3 n7r8c4 n6r9c5 n3r9c8

At least one candidate of a previous El97-OR6-relation has been eliminated.
There remains a El97-OR5-relation between candidates: n1r1c2 n3r1c2 n7r7c3 n7r7c5 n6r9c4

At least one candidate of a previous El97-OR6-relation has been eliminated.
There remains a El97-OR5-relation between candidates: n4r2c2 n7r7c3 n7r7c5 n6r9c4 n3r9c8

At least one candidate of a previous El97-OR7-relation has been eliminated.
There remains a El97-OR6-relation between candidates: n1r1c2 n3r1c2 n7r7c3 n7r7c5 n6r9c4 n3r9c8

At least one candidate of a previous El97-OR5-relation has been eliminated.
There remains a El97-OR4-relation between candidates: n1r1c2 n7r7c3 n7r7c5 n6r9c4

At least one candidate of a previous El97-OR6-relation has been eliminated.
There remains a El97-OR5-relation between candidates: n1r1c2 n7r7c3 n7r7c5 n6r9c4 n3r9c8


More eliminations, based on each of the two contradictory patterns:
Trid-OR3-whip[4]: r6n7{c8 c5} - r4c4{n7 n6} - OR3{{n6r9c4 n7r7c5 | n3r9c8}} - r5c8{n3 .} ==> r6c8≠2
Trid-OR3-whip[4]: r6c5{n1 n7} - r4c4{n7 n6} - OR3{{n6r9c4 n7r7c5 | n3r9c8}} - b6n3{r5c8 .} ==> r6c7≠1
El97-OR4-whip[4]: r7n1{c1 c2} - OR4{{n1r1c2 n7r7c3 n7r7c5 | n6r9c4}} - r4c4{n6 n7} - r8n7{c4 .} ==> r7c1≠7

biv-chain[5]: b9n8{r8c7 r9c7} - c7n3{r9 r6} - r5n3{c8 c1} - c1n4{r5 r2} - c1n7{r2 r8} ==> r8c1≠8
singles ==> r9c1=8, r8c7=8
whip[5]: c7n3{r9 r6} - r5c8{n3 n2} - b3n2{r3c8 r1c9} - c5n2{r1 r7} - b7n2{r7c2 .} ==> r9c7≠2
Trid-OR3-whip[5]: r6n7{c8 c5} - r4c4{n7 n6} - OR3{{n6r9c4 n7r7c5 | n3r9c8}} - r5n3{c8 c1} - r6c3{n3 .} ==> r6c8≠5
singles ==> r6c8=7, r6c5=1
Trid-OR3-whip[5]: r8n7{c1 c4} - r4c4{n7 n6} - OR3{{n6r9c4 n7r7c5 | n3r9c8}} - r5n3{c8 c1} - c1n4{r5 .} ==> r2c1≠7
singles ==> r2c3=7, r8c1=7, r7c5=7, r4c5=6, r4c4=7, r9c4=6

Code: Select all
   +----------------+----------------+----------------+
   ! 135  1259 2359 ! 4    259  6    ! 7    8    259  !
   ! 45   2459 7    ! 1    8    259  ! 259  6    3    !
   ! 6    8    259  ! 259  3    7    ! 14   259  14   !
   +----------------+----------------+----------------+
   ! 2    45   8    ! 7    6    3    ! 1459 59   1459 !
   ! 345  7    1    ! 259  259  2459 ! 6    23   8    !
   ! 9    6    35   ! 8    1    245  ! 2345 7    245  !
   +----------------+----------------+----------------+
   ! 15   1259 259  ! 3    7    8    ! 259  4    6    !
   ! 7    3    6    ! 259  4    259  ! 8    1    259  !
   ! 8    259  4    ! 6    259  1    ! 359  2359 7    !
   +----------------+----------------+----------------+

At least one candidate of a previous El97-OR5-relation has just been eliminated.
There remains a El97-OR2-relation between candidates: n4r2c2 n3r9c8


El97-OR2-whip[3]: OR2{{n3r9c8 | n4r2c2}} - r4c2{n4 n5} - r4c8{n5 .} ==> r9c8≠9
El97-OR2-whip[3]: r5n3{c1 c8} - OR2{{n3r9c8 | n4r2c2}} - r4c2{n4 .} ==> r5c1≠5


The end is easy, in W4:
Code: Select all
whip[1]: r5n5{c6 .} ==> r6c6≠5
biv-chain[3]: b1n3{r1c3 r1c1} - r5c1{n3 n4} - r2c1{n4 n5} ==> r1c3≠5
biv-chain[3]: b6n3{r6c7 r5c8} - r5c1{n3 n4} - b5n4{r5c6 r6c6} ==> r6c7≠4
hidden-pairs-in-a-column: c7{n1 n4}{r3 r4} ==> r4c7≠9, r4c7≠5
biv-chain[3]: r6c3{n5 n3} - r5c1{n3 n4} - r2c1{n4 n5} ==> r3c3≠5
t-whip[4]: c3n2{r3 r7} - c3n5{r7 r6} - r6n3{c3 c7} - c7n2{r6 .} ==> r2c2≠2
biv-chain[4]: r2n2{c7 c6} - r6c6{n2 n4} - r5n4{c6 c1} - r2c1{n4 n5} ==> r2c7≠5
z-chain[4]: r6n3{c7 c3} - c3n5{r6 r7} - c7n5{r7 r9} - c7n3{r9 .} ==> r6c7≠2
naked-pairs-in-a-row: r6{c3 c7}{n3 n5} ==> r6c9≠5
finned-x-wing-in-rows: n2{r6 r2}{c6 c9} ==> r1c9≠2
t-whip[4]: r3c3{n9 n2} - b3n2{r3c8 r2c7} - r7n2{c7 c2} - c2n1{r7 .} ==> r1c2≠9
z-chain[5]: c7n9{r9 r2} - b3n2{r2c7 r3c8} - r3c3{n2 n9} - r1n9{c3 c5} - b8n9{r9c5 .} ==> r8c9≠9
whip[1]: b9n9{r9c7 .} ==> r2c7≠9
naked-single ==> r2c7=2
whip[1]: r7n2{c3 .} ==> r9c2≠2
whip[1]: r8n9{c6 .} ==> r9c5≠9
naked-pairs-in-a-column: c8{r3 r4}{n5 n9} ==> r9c8≠5
hidden-pairs-in-a-column: c2{n1 n2}{r1 r7} ==> r7c2≠9, r7c2≠5, r1c2≠5
biv-chain[3]: r2c6{n9 n5} - r3n5{c4 c8} - b3n9{r3c8 r1c9} ==> r1c5≠9
hidden-single-in-a-column ==> r5c5=9
t-whip[2]: c5n5{r1 r9} - r8n5{c6 .} ==> r1c9≠5
singles ==> r1c9=9, r3c8=5 r4c8=9
biv-chain[3]: c4n5{r5 r8} - r9c5{n5 n2} - c8n2{r9 r5} ==> r5c4≠2
naked-single ==> r5c4=5
whip[1]: b5n2{r6c6 .} ==> r8c6≠2
biv-chain[3]: r8c6{n5 n9} - r2n9{c6 c2} - r9c2{n9 n5} ==> r9c5≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles

cron