totuan wrote:Not much interesting for this one, but at finishing by impossible pattern
My purpose was to propose a puzzle with the most common impossible patterns (here EL14c30 and EL14c159, the 2nd and 3rd in Imp630-Select1). Longest chain has length 5.
For a different game, see my next puzzle.
- Code: Select all
hidden-pairs-in-a-column: c8{n1 n5}{r8 r9} ==> r9c8≠8, r9c8≠7, r9c8≠4, r8c8≠8, r8c8≠7, r8c8≠4
hidden-pairs-in-a-column: c9{n3 n6}{r7 r9} ==> r9c9≠8, r9c9≠7, r9c9≠4, r7c9≠8, r7c9≠7, r7c9≠4, r7c9≠2
hidden-single-in-a-block ==> r7c7=2
hidden-pairs-in-a-row: r2{n5 n6}{c2 c3} ==> r2c3≠9, r2c2≠9, r2c2≠2
whip[1]: b1n2{r1c2 .} ==> r1c4≠2, r1c9≠2
The 3 impossible patterns that will be used:
- Code: Select all
Trid-OR3-relation for digits 4, 7 and 8 in blocks:
b5, with cells (marked #): r4c6, r5c5, r6c4
b6, with cells (marked #): r4c9, r5c8, r6c7
b8, with cells (marked #): r7c6, r8c5, r9c4
b9, with cells (marked #): r7c8, r8c9, r9c7
with 3 guardians (in cells marked @): n2r5c5 n1r6c4 n3r6c4
+-------------------------+-------------------------+-------------------------+
! 12 29 3 ! 1478 5 6 ! 478 478 4789 !
! 4 56 56 ! 278 278 789 ! 1 3 2789 !
! 8 7 19 ! 1234 234 149 ! 5 6 249 !
+-------------------------+-------------------------+-------------------------+
! 2357 1 4578 ! 23478 23478 478# ! 6 9 478# !
! 6 248 478 ! 9 2478#@ 5 ! 3 478# 1 !
! 9 348 478 ! 13478#@ 6 1478 ! 478# 2 5 !
+-------------------------+-------------------------+-------------------------+
! 37 34689 46789 ! 5 1 478# ! 2 478# 36 !
! 157 458 2 ! 6 478# 3 ! 9 15 478# !
! 1357 34568 145678 ! 478# 9 2 ! 478# 15 36 !
+-------------------------+-------------------------+-------------------------+
EL14c30-OR6-relation for digits: 4, 7 and 8
in cells (marked #): (r6c7 r4c4 r4c6 r4c9 r5c3 r5c5 r5c8 r7c6 r7c8 r8c5 r8c9 r9c3 r9c4 r9c7)
with 6 guardians (in cells marked @) : n2r4c4 n3r4c4 n2r5c5 n1r9c3 n5r9c3 n6r9c3
+----------------------------+----------------------------+----------------------------+
! 12 29 3 ! 1478 5 6 ! 478 478 4789 !
! 4 56 56 ! 278 278 789 ! 1 3 2789 !
! 8 7 19 ! 1234 234 149 ! 5 6 249 !
+----------------------------+----------------------------+----------------------------+
! 2357 1 4578 ! 23478#@ 23478 478# ! 6 9 478# !
! 6 248 478# ! 9 2478#@ 5 ! 3 478# 1 !
! 9 348 478 ! 13478 6 1478 ! 478# 2 5 !
+----------------------------+----------------------------+----------------------------+
! 37 34689 46789 ! 5 1 478# ! 2 478# 36 !
! 157 458 2 ! 6 478# 3 ! 9 15 478# !
! 1357 34568 145678#@ ! 478# 9 2 ! 478# 15 36 !
+----------------------------+----------------------------+----------------------------+
EL14c159-OR6-relation for digits: 4, 7 and 8
in cells (marked #): (r8c5 r8c9 r7c6 r7c8 r9c3 r9c4 r9c7 r4c5 r4c9 r6c3 r6c7 r5c3 r5c5 r5c8)
with 6 guardians (in cells marked @) : n1r9c3 n5r9c3 n6r9c3 n2r4c5 n3r4c5 n2r5c5
+----------------------------+----------------------------+----------------------------+
! 12 29 3 ! 1478 5 6 ! 478 478 4789 !
! 4 56 56 ! 278 278 789 ! 1 3 2789 !
! 8 7 19 ! 1234 234 149 ! 5 6 249 !
+----------------------------+----------------------------+----------------------------+
! 2357 1 4578 ! 23478 23478#@ 478 ! 6 9 478# !
! 6 248 478# ! 9 2478#@ 5 ! 3 478# 1 !
! 9 348 478# ! 13478 6 1478 ! 478# 2 5 !
+----------------------------+----------------------------+----------------------------+
! 37 34689 46789 ! 5 1 478# ! 2 478# 36 !
! 157 458 2 ! 6 478# 3 ! 9 15 478# !
! 1357 34568 145678#@ ! 478# 9 2 ! 478# 15 36 !
+----------------------------+----------------------------+----------------------------+
- Code: Select all
z-chain[4]: c3n9{r7 r3} - b1n1{r3c3 r1c1} - c1n2{r1 r4} - c1n7{r4 .} ==> r7c3≠7
biv-chain[5]: r7n9{c3 c2} - r1c2{n9 n2} - b4n2{r5c2 r4c1} - b4n5{r4c1 r4c3} - r2c3{n5 n6} ==> r7c3≠6
Trid-OR3-ctr-whip[5]: c5n3{r3 r4} - b5n2{r4c5 r4c4} - c1n2{r4 r1} - r1n1{c1 c4} - OR3{{n3r6c4 n1r6c4 n2r5c5 | .}} ==> r3c5≠2
Trid-OR3-whip[5]: b4n2{r4c1 r5c2} - r1n2{c2 c1} - r1n1{c1 c4} - OR3{{n1r6c4 n2r5c5 | n3r6c4}} - b4n3{r6c2 .} ==> r4c1≠7whip[1]: c1n7{r9 .} ==> r9c3≠7
Trid-OR3-whip[5]: b4n2{r4c1 r5c2} - r1n2{c2 c1} - r1n1{c1 c4} - OR3{{n1r6c4 n2r5c5 | n3r6c4}} - b4n3{r6c2 .} ==> r4c1≠5singles ==> r4c3=5, r2c3=6, r2c2=5
- Code: Select all
+-------------------+-------------------+-------------------+
! 12 29 3 ! 1478 5 6 ! 478 478 4789 !
! 4 5 6 ! 278 278 789 ! 1 3 2789 !
! 8 7 19 ! 1234 34 149 ! 5 6 249 !
+-------------------+-------------------+-------------------+
! 23 1 5 ! 23478 23478 478 ! 6 9 478 !
! 6 248 478 ! 9 2478 5 ! 3 478 1 !
! 9 348 478 ! 13478 6 1478 ! 478 2 5 !
+-------------------+-------------------+-------------------+
! 37 34689 489 ! 5 1 478 ! 2 478 36 !
! 157 48 2 ! 6 478 3 ! 9 15 478 !
! 1357 3468 148 ! 478 9 2 ! 478 15 36 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL14c30-OR6-relation between candidates n2r4c4 n3r4c4 n2r5c5 n1r9c3 n5r9c3 n6r9c3 has just been eliminated.
There remains an EL14c30-OR4-relation between candidates: n2r4c4 n3r4c4 n2r5c5 n1r9c3
At least one candidate of a previous EL14c159-OR6-relation between candidates n1r9c3 n5r9c3 n6r9c3 n2r4c5 n3r4c5 n2r5c5 has just been eliminated.
There remains an EL14c159-OR4-relation between candidates: n1r9c3 n2r4c5 n3r4c5 n2r5c5
hidden-pairs-in-a-row: r8{n1 n5}{c1 c8} ==> r8c1≠7
finned-x-wing-in-rows: n7{r8 r4}{c9 c5} ==> r5c5≠7
z-chain[4]: c2n9{r7 r1} - r3c3{n9 n1} - r9c3{n1 n4} - r8c2{n4 .} ==> r7c2≠8
z-chain[4]: c2n9{r7 r1} - r3c3{n9 n1} - r9c3{n1 n8} - r8c2{n8 .} ==> r7c2≠4
whip[4]: r8c2{n4 n8} - r5c2{n8 n2} - r4c1{n2 n3} - r6c2{n3 .} ==> r9c2≠4
whip[4]: r8c2{n8 n4} - r5c2{n4 n2} - r4c1{n2 n3} - r6c2{n3 .} ==> r9c2≠8
naked-pairs-in-a-row: r9{c2 c9}{n3 n6} ==> r9c1≠3
EL14c159-OR4-whip[4]: r4c1{n2 n3} - OR4{{n3r4c5 n2r4c5 n2r5c5 | n1r9c3}} - b1n1{r3c3 r1c1} - c1n2{r1 .} ==> r4c4≠2- Code: Select all
+-------------------+-------------------+-------------------+
! 12 29 3 ! 1478 5 6 ! 478 478 4789 !
! 4 5 6 ! 278 278 789 ! 1 3 2789 !
! 8 7 19 ! 1234 34 149 ! 5 6 249 !
+-------------------+-------------------+-------------------+
! 23 1 5 ! 3478 23478 478 ! 6 9 478 !
! 6 248 478 ! 9 248 5 ! 3 478 1 !
! 9 348 478 ! 13478 6 1478 ! 478 2 5 !
+-------------------+-------------------+-------------------+
! 37 369 489 ! 5 1 478 ! 2 478 36 !
! 15 48 2 ! 6 478 3 ! 9 15 478 !
! 157 36 148 ! 478 9 2 ! 478 15 36 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL14c30-OR4-relation between candidates n2r4c4 n3r4c4 n2r5c5 n1r9c3 has just been eliminated.
There remains an EL14c30-OR3-relation between candidates: n3r4c4 n2r5c5 n1r9c3
whip[1]: b5n2{r5c5 .} ==> r2c5≠2
EL14c30-OR3-whip[4]: r4c1{n2 n3} - OR3{{n3r4c4 n2r5c5 | n1r9c3}} - r3c3{n1 n9} - r1c2{n9 .} ==> r5c2≠2The end is easy, in S3Fin+Z3
- Code: Select all
singles ==> r4c1=2, r1c1=1, r3c3=9, r1c2=2, r8c1=5, r8c8=1, r9c8=5, r9c1=7, r7c1=3, r7c9=6, r7c2=9, r9c9=3, r9c2=6, r6c2=3, r9c3=1, r1c9=9, r2c6=9, r5c5=2
finned-swordfish-in-rows: n7{r2 r8 r4}{c4 c9 c5} ==> r6c4≠7
z-chain[3]: r9c4{n8 n4} - r1c4{n4 n7} - r2c5{n7 .} ==> r2c4≠8
z-chain[3]: b2n8{r1c4 r2c5} - c9n8{r2 r8} - r9n8{c7 .} ==> r4c4≠8
z-chain[3]: c6n8{r6 r7} - b8n7{r7c6 r8c5} - r2c5{n7 .} ==> r4c5≠8
finned-swordfish-in-columns: n8{c5 c2 c9}{r2 r8 r5} ==> r5c8≠8
whip[1]: r5n8{c3 .} ==> r6c3≠8
biv-chain[2]: r9n8{c4 c7} - c8n8{r7 r1} ==> r1c4≠8
hidden-single-in-a-block ==> r2c5=8
whip[1]: b2n7{r2c4 .} ==> r4c4≠7
biv-chain[3]: r6c3{n4 n7} - c7n7{r6 r1} - r1c4{n7 n4} ==> r6c4≠4
biv-chain[3]: r5n7{c8 c3} - c3n8{r5 r7} - c8n8{r7 r1} ==> r1c8≠7
biv-chain[3]: c7n7{r1 r6} - c8n7{r5 r7} - c8n8{r7 r1} ==> r1c7≠8
hidden-single-in-a-block ==> r1c8=8
x-wing-in-rows: n4{r1 r9}{c4 c7} ==> r6c7≠4, r4c4≠4, r3c4≠4
singles ==> r4c4=3, r3c5=3
x-wing-in-columns: n8{c4 c7}{r6 r9} ==> r6c6≠8
finned-x-wing-in-rows: n4{r3 r4}{c9 c6} ==> r6c6≠4
stte