- Code: Select all
+----------------------------+----------------------------+----------------------------+
|*167 2 3 | 4 5 *167 | 1679 8 1679 |
| 45 45 *167 |*167 8 9 | 1267 123 12367 |
| 8 *167 9 | 3 *167 2 | 167 5 4 |
+----------------------------+----------------------------+----------------------------+
| 29 *167 5 |*167 3 4 | 8 129 12679 |
|*167 8 4 | 9 2 *167+5 | 1567 13 1367 |
| 29 3 *167 | 8 *167 1567 | 1245679 1249 12679 |
+----------------------------+----------------------------+----------------------------+
| 13457 1457 2 | 157 1479 137 | 149 6 8 |
| 13456 9 168 | 1256 146 1368 | 124 7 12 |
| 1467 1467 1678 | 1267 14679 1678 | 3 1249 5 |
+----------------------------+----------------------------+----------------------------+
TH 167 (*): 5r5c6
- Code: Select all
+----------------------+----------------------+----------------------+
|#167 2 3 | 4 5 #167 | 1679 8 1679 |
| 45 45 *167 |*167 8 9 |*167+2 123 12367 |
| 8 *167 9 | 3 *167 2 |*167 5 4 |
+----------------------+----------------------+----------------------+
| 29 *167 5 |*167 3 4 | 8 129 12679 |
|#167 8 4 | 9 2 5 |*167 13 1367 |
| 29 3 *167 | 8 *167 *167 | 5 4 29 |
+----------------------+----------------------+----------------------+
| 13457 1457 2 | 157 1479 137 | 149 6 8 |
| 13456 9 168 | 1256 146 1368 | 124 7 12 |
| 1467 1467 1678 | 1267 14679 1678 | 3 129 5 |
+----------------------+----------------------+----------------------+
Impossible pattern 167 (*#): 2r2c7
Proof: r5c6 is a rectangle cell of a TH, therefore there is a remote triple in cells #.
Then the digit in r5c1 cannot be in r1c16, must be in r1c789 , cannot be in the rest of the box, especially not in r23c7.
And it cannot be in r5c7, so it is missing in r235c7, and r2c7 must be 2.
- Code: Select all
+----------------------+----------------------+----------------------+
| 167 2 3 | 4 5 167 |a1679 8 a1679 |
| 45 45 167 | 167 8 9 |c1267 c123 12367 |
| 8 167 9 | 3 167 2 |b167 5 4 |
+----------------------+----------------------+----------------------+
| 29 167 5 | 167 3 4 | 8 129 12679 |
|*167 8 4 | 9 2 5 |b167 d13 1367 |
| 29 3 167 | 8 167 167 | 5 4 29 |
+----------------------+----------------------+----------------------+
| 13457 1457 2 | 157 1479 137 | 149 6 8 |
| 13456 9 168 | 1256 146 1368 | 124 7 12 |
| 1467 1467 1678 | 1267 14679 1678 | 3 129 5 |
+----------------------+----------------------+----------------------+
(67=1)r5c1 - r5c7 | (RT)r1c16 = (1r1c79 & 67r35c7) - (1|6|7=23)r2c78 - (3=1)r5c8 => -1r5c1
(if 1r5c1, then 1 cannot be in r5c7 and (RT) not in b3p4567, and (67r35c7) r2c7 can't be 67. So r2c78 must be 23, and r5c8=1, contradiction => -1r5c1)
Then RT => 1r1c16, -1r1c79
- Code: Select all
+----------------------+----------------------+----------------------+
|c167 2 3 | 4 5 c167 | 679 8 9-67 |
| 45 45 167 | 167 8 9 | 1267 123 12367 |
| 8 167 9 | 3 167 2 | 167 5 4 |
+----------------------+----------------------+----------------------+
| 29 167 5 | 167 3 4 | 8 29 b67 |
|*67 8 4 | 9 2 5 |a167 13 a1367 |
| 29 3 167 | 8 167 167 | 5 4 29 |
+----------------------+----------------------+----------------------+
| 13457 1457 2 | 157 1479 137 | 149 6 8 |
| 13456 9 168 | 1256 146 1368 | 124 7 12 |
| 1467 1467 1678 | 1267 14679 1678 | 3 129 5 |
+----------------------+----------------------+----------------------+
The digit (6 or 7) in r5c1 must be in r4c9, the other (RT) in r1c16 => -67r1c9
- Code: Select all
+----------------+----------------+----------------+
|#167 2 3 | 4 5 #167 | 67 8 9 |
| 4 5 167 | 167 8 9 | 2 13 367 |
| 8 167 9 | 3 17 2 | 167 5 4 |
+----------------+----------------+----------------+
| 2 167 5 | 167 3 4 | 8 9 67 |
| 67 8 4 | 9 2 5 | 167 13 367 |
| 9 3 167 | 8 17 167 | 5 4 2 |
+----------------+----------------+----------------+
| 3 #17 2 | 5 4 #17 | 9 6 8 |
| 5 9 8 | 2 6 3 | 4 7 1 |
| 67-1 4 167 | 17 9 8 | 3 2 5 |
+----------------+----------------+----------------+
Skyscraper 1r17 => -1r9c1, stte