.
Thanks for your solution. Mine is based on different impossible patterns.
hidden-pairs-in-a-row: r9{n3 n8}{c4 c6} ==> r9c6≠4, r9c4≠7, r9c4≠6
hidden-pairs-in-a-row: r7{n1 n5}{c1 c2} ==> r7c2≠7, r7c2≠6, r7c2≠4, r7c1≠7, r7c1≠6, r7c1≠4
The easy tridagon part:
- Code: Select all
Trid-OR3-relation for digits 4, 6 and 7 in blocks:
b4, with cells (marked #): r4c3, r5c2, r6c1
b6, with cells (marked #): r4c8, r5c9, r6c7
b7, with cells (marked #): r7c3, r9c2, r8c1
b9, with cells (marked #): r7c8, r9c7, r8c9
with 3 guardians (in cells marked @): n8r4c3 n8r6c1 n8r8c1
+----------------------+----------------------+----------------------+
! 1578 2 3 ! 4 59 6 ! 57 78 179 !
! 4567 4567 467 ! 1 8 2359 ! 24567 3467 4679 !
! 14568 14568 9 ! 23 25 7 ! 2456 3468 146 !
+----------------------+----------------------+----------------------+
! 2 46789 4678#@ ! 6789 45679 4589 ! 1 467# 3 !
! 3 467# 5 ! 267 1 24 ! 8 9 467# !
! 4678#@ 46789 1 ! 6789 3 489 ! 467# 5 2 !
+----------------------+----------------------+----------------------+
! 15 15 467# ! 2679 24679 249 ! 3 467# 8 !
! 4678#@ 3 4678 ! 5 467 1 ! 9 2 467# !
! 9 467# 2 ! 38 467 38 ! 467# 1 5 !
+----------------------+----------------------+----------------------+
Trid-OR3-relation between candidates n8r4c3, n8r6c1 and n8r8c1
+ same valence for candidates n8r8c1 and n8r4c3 via c-chain[2]: n8r8c1,n8r8c3,n8r4c3
==> Trid-OR3-relation can be split into two Trid-OR2-relations with respective lists of guardians:
n8r4c3 n8r6c1 and n8r6c1 n8r8c1 .
Trid-OR2-whip[1]: OR2{{n8r6c1 n8r4c3 | .}} ==> r6c2≠8
Trid-OR2-whip[1]: OR2{{n8r6c1 n8r4c3 | .}} ==> r4c2≠8singles ==> r3c2=8, r1c8=8, r7c2=1, r7c1=5, r2c2=5, r4c6=5
Three other impossible patterns, with the numbers of guardians immediately reduced by ORk-splitting rules.
Remember that SudoRules can only identify non-degenerate patterns and therefore has to identify them as soon as possible.
- Code: Select all
EL10c28-OR5-relation for digits: 4, 6 and 7
in cells (marked #): (r7c5 r7c8 r9c2 r9c5 r9c7 r6c2 r5c2 r4c3 r4c5 r4c8)
with 5 guardians (in cells marked @) : n2r7c5 n9r7c5 n9r6c2 n8r4c3 n9r4c5
+-------------------------+-------------------------+-------------------------+
! 17 2 3 ! 4 59 6 ! 57 8 179 !
! 467 5 467 ! 1 8 239 ! 2467 3467 4679 !
! 146 8 9 ! 23 25 7 ! 2456 346 146 !
+-------------------------+-------------------------+-------------------------+
! 2 4679 4678#@ ! 6789 4679#@ 5 ! 1 467# 3 !
! 3 467# 5 ! 267 1 24 ! 8 9 467 !
! 4678 4679#@ 1 ! 6789 3 489 ! 467 5 2 !
+-------------------------+-------------------------+-------------------------+
! 5 1 467 ! 2679 24679#@ 249 ! 3 467# 8 !
! 4678 3 4678 ! 5 467 1 ! 9 2 467 !
! 9 467# 2 ! 38 467# 38 ! 467# 1 5 !
+-------------------------+-------------------------+-------------------------+
EL13c175-OR4-relation for digits: 4, 6 and 7
in cells (marked #): (r8c5 r8c9 r8c3 r9c5 r9c7 r9c2 r5c9 r5c2 r6c7 r6c1 r4c5 r4c8 r4c2)
with 4 guardians (in cells marked @) : n8r8c3 n8r6c1 n9r4c5 n9r4c2
+----------------------+----------------------+----------------------+
! 17 2 3 ! 4 59 6 ! 57 8 179 !
! 467 5 467 ! 1 8 239 ! 2467 3467 4679 !
! 146 8 9 ! 23 25 7 ! 2456 346 146 !
+----------------------+----------------------+----------------------+
! 2 4679#@ 4678 ! 6789 4679#@ 5 ! 1 467# 3 !
! 3 467# 5 ! 267 1 24 ! 8 9 467# !
! 4678#@ 4679 1 ! 6789 3 489 ! 467# 5 2 !
+----------------------+----------------------+----------------------+
! 5 1 467 ! 2679 24679 249 ! 3 467 8 !
! 4678 3 4678#@ ! 5 467# 1 ! 9 2 467# !
! 9 467# 2 ! 38 467# 38 ! 467# 1 5 !
+----------------------+----------------------+----------------------+
EL13c175-OR4-relation between candidates n8r8c3, n8r6c1, n9r4c5 and n9r4c2
+ same valence for candidates n8r8c3 and n8r6c1 via c-chain[2]: n8r8c3,n8r8c1,n8r6c1
==> EL13c175-OR4-relation can be split into two EL13c175-OR3-relations with respective lists of guardians:
n8r6c1 n9r4c5 n9r4c2 and n8r8c3 n9r4c5 n9r4c2 .
EL13c175-OR3-whip[2]: OR3{{n9r4c2 n9r4c5 | n8r6c1}} - b5n8{r6c4 .} ==> r4c4≠9- Code: Select all
EL10c28-OR5-relation between candidates n2r7c5, n9r7c5, n9r6c2, n8r4c3 and n9r4c5
+ same valence for candidates n9r4c5 and n9r6c2 via c-chain[2]: n9r4c5,n9r4c2,n9r6c2
==> EL10c28-OR5-relation can be split into two EL10c28-OR4-relations with respective lists of guardians:
n2r7c5 n9r7c5 n9r6c2 n8r4c3 and n2r7c5 n9r7c5 n8r4c3 n9r4c5 .
EL14c93-OR4-relation for digits: 4, 6 and 7
in cells (marked #): (r7c8 r9c5 r9c2 r9c7 r8c5 r8c3 r8c9 r5c2 r5c9 r6c1 r6c2 r6c7 r4c5 r4c8)
with 4 guardians (in cells marked @) : n8r8c3 n8r6c1 n9r6c2 n9r4c5
+----------------------+----------------------+----------------------+
! 17 2 3 ! 4 59 6 ! 57 8 179 !
! 467 5 467 ! 1 8 239 ! 2467 3467 4679 !
! 146 8 9 ! 23 25 7 ! 2456 346 146 !
+----------------------+----------------------+----------------------+
! 2 4679 4678 ! 678 4679#@ 5 ! 1 467# 3 !
! 3 467# 5 ! 267 1 24 ! 8 9 467# !
! 4678#@ 4679#@ 1 ! 6789 3 489 ! 467# 5 2 !
+----------------------+----------------------+----------------------+
! 5 1 467 ! 2679 24679 249 ! 3 467# 8 !
! 4678 3 4678#@ ! 5 467# 1 ! 9 2 467# !
! 9 467# 2 ! 38 467# 38 ! 467# 1 5 !
+----------------------+----------------------+----------------------+
EL14c93-OR4-relation between candidates n8r8c3, n8r6c1, n9r6c2 and n9r4c5
+ same valence for candidates n8r8c3 and n8r6c1 via c-chain[2]: n8r8c3,n8r8c1,n8r6c1
==> EL14c93-OR4-relation can be split into two EL14c93-OR3-relations with respective lists of guardians:
n8r6c1 n9r6c2 n9r4c5 and n8r8c3 n9r6c2 n9r4c5 .
EL14c93-OR3-relation between candidates n8r8c3, n9r6c2 and n9r4c5
+ same valence for candidates n9r6c2 and n9r4c5 via c-chain[2]: n9r6c2,n9r4c2,n9r4c5
==> EL14c93-OR3-relation can be split into two EL14c93-OR2-relations with respective lists of guardians:
n8r8c3 n9r4c5 and n8r8c3 n9r6c2 .
EL14c93-OR3-relation between candidates n8r6c1, n9r6c2 and n9r4c5
+ same valence for candidates n9r6c2 and n9r4c5 via c-chain[2]: n9r6c2,n9r4c2,n9r4c5
==> EL14c93-OR3-relation can be split into two EL14c93-OR2-relations with respective lists of guardians:
n8r6c1 n9r4c5 and n8r6c1 n9r6c2 .
biv-chain[3]: r1c7{n7 n5} - r1c5{n5 n9} - b3n9{r1c9 r2c9} ==> r2c9≠7
Now come three EL14c93-OR2-whips[4], with the same EL14c93-OR2-relation at different places:
EL14c93-OR2-ctr-whip[4]: c5n7{r9 r4} - c8n7{r4 r2} - c3n7{r2 r8} - OR2{{n9r4c5 n8r8c3 | .}} ==> r7c4≠7whip[1]: b8n7{r9c5 .} ==> r4c5≠7
EL14c93-OR2-whip[4]: b2n9{r2c6 r1c5} - OR2{{n9r4c5 | n8r6c1}} - c6n8{r6 r9} - c6n3{r9 .} ==> r2c6≠2hidden-single-in-a-row ==> r2c7=2
EL14c93-OR2-whip[4]: OR2{{n9r4c5 | n8r6c1}} - c6n8{r6 r9} - c6n3{r9 r2} - b2n9{r2c6 .} ==> r7c5≠9Note that:
- until now, we have used only very short chains and ORk-chains;
- at this point, the puzzle is in W7 and could be solved without using again any impossible pattern;
- FAPP, the puzzle could be considered as solved;
but why stop the fun here?
- Code: Select all
Resolution state RS2:
+----------------+----------------+----------------+
! 17 2 3 ! 4 59 6 ! 57 8 179 !
! 467 5 467 ! 1 8 39 ! 2 3467 469 !
! 146 8 9 ! 23 25 7 ! 456 346 146 !
+----------------+----------------+----------------+
! 2 4679 4678 ! 678 469 5 ! 1 467 3 !
! 3 467 5 ! 267 1 24 ! 8 9 467 !
! 4678 4679 1 ! 6789 3 489 ! 467 5 2 !
+----------------+----------------+----------------+
! 5 1 467 ! 269 2467 249 ! 3 467 8 !
! 4678 3 4678 ! 5 467 1 ! 9 2 467 !
! 9 467 2 ! 38 467 38 ! 467 1 5 !
+----------------+----------------+----------------+
At least one candidate of a previous EL10c28-OR4-relation between candidates n2r7c5 n9r7c5 n9r6c2 n8r4c3 has just been eliminated.
There remains an EL10c28-OR3-relation between candidates: n2r7c5 n9r6c2 n8r4c3
biv-chain[3]: r7n9{c4 c6} - r2c6{n9 n3} - r3c4{n3 n2} ==> r7c4≠2
EL14c93-OR2-whip[4]: OR2{{n8r6c1 | n9r4c5}} - b2n9{r1c5 r2c6} - c6n3{r2 r9} - r9n8{c6 .} ==> r6c4≠8
EL14c93-OR2-whip[5]: OR2{{n8r6c1 | n9r4c5}} - r1c5{n9 n5} - r3n5{c5 c7} - c7n4{r3 r9} - c2n4{r9 .} ==> r6c1≠4
EL14c93-OR2-whip[5]: OR2{{n8r6c1 | n9r4c5}} - r1c5{n9 n5} - r3n5{c5 c7} - c7n6{r3 r9} - c2n6{r9 .} ==> r6c1≠6t-whip[3]: c3n8{r8 r4} - r6c1{n8 n7} - b1n7{r1c1 .} ==> r8c3≠7
z-chain[4]: r7c4{n6 n9} - r6c4{n9 n7} - r6c1{n7 n8} - b5n8{r6c6 .} ==> r4c4≠6
biv-chain[5]: r4c4{n7 n8} - c6n8{r6 r9} - c6n3{r9 r2} - b2n9{r2c6 r1c5} - r4n9{c5 c2} ==> r4c2≠7
whip[6]: c5n2{r7 r3} - r3c4{n2 n3} - r9c4{n3 n8} - r4c4{n8 n7} - c3n7{r4 r2} - c8n7{r2 .} ==> r7c5≠7
z-chain[5]: r7n7{c8 c3} - r4n7{c3 c4} - r4n8{c4 c3} - r6c1{n8 n7} - r1n7{c1 .} ==> r2c8≠7
whip[1]: r2n7{c3 .} ==> r1c1≠7
naked-single ==> r1c1=1
hidden-single-in-a-block ==> r3c9=1
t-whip[5]: b1n7{r2c1 r2c3} - r7n7{c3 c8} - r4n7{c8 c4} - b5n8{r4c4 r6c6} - r6c1{n8 .} ==> r8c1≠7
biv-chain[6]: c8n7{r7 r4} - r4c4{n7 n8} - c6n8{r6 r9} - c6n3{r9 r2} - r2n9{c6 c9} - r1c9{n9 n7} ==> r8c9≠7
hidden-single-in-a-row ==> r8c5=7
whip[5]: r8n6{c3 c9} - r5n6{c9 c4} - r5n2{c4 c6} - r7n2{c6 c5} - r7n6{c5 .} ==> r9c2≠6
whip[1]: c2n6{r6 .} ==> r4c3≠6
z-chain[3]: b8n4{r7c6 r9c5} - r9c2{n4 n7} - b9n7{r9c7 .} ==> r7c8≠4
EL10c28-OR3-whip[4]: r9c2{n7 n4} - b4n4{r4c2 r4c3} - OR3{{n8r4c3 n9r6c2 | n2r7c5}} - c5n4{r7 .} ==> r6c2≠7
EL14c93-OR2-whip[5]: r8n8{c3 c1} - r6n8{c1 c6} - OR2{{n8r6c1 | n9r6c2}} - r6n4{c2 c7} - b9n4{r9c7 .} ==> r8c3≠4finned-x-wing-in-rows: n4{r8 r3}{c1 c9} ==> r2c9≠4
biv-chain[3]: r2c9{n6 n9} - r2c6{n9 n3} - b3n3{r2c8 r3c8} ==> r3c8≠6
EL14c93-OR2-ctr-whip[4]: c5n6{r9 r4} - c8n6{r4 r2} - c3n6{r2 r8} - OR2{{n8r8c3 n9r4c5 | .}} ==> r7c4≠6naked-single ==> r7c4=9
whip[1]: b8n6{r9c5 .} ==> r4c5≠6
naked-pairs-in-a-column: c6{r5 r7}{n2 n4} ==> r6c6≠4
biv-chain[3]: r4c5{n4 n9} - c2n9{r4 r6} - r6n4{c2 c7} ==> r4c8≠4
whip[1]: c8n4{r3 .} ==> r3c7≠4
naked-pairs-in-a-column: c8{r4 r7}{n6 n7} ==> r2c8≠6
finned-swordfish-in-rows: n4{r9 r6 r4}{c5 c7 c2} ==> r5c2≠4
biv-chain[3]: c7n4{r6 r9} - r8c9{n4 n6} - b3n6{r2c9 r3c7} ==> r6c7≠6
biv-chain[3]: r3c1{n4 n6} - c7n6{r3 r9} - b9n4{r9c7 r8c9} ==> r8c1≠4
stte