- Code: Select all
*-----------*
|.2.|..3|.1.|
|5..|.4.|7..|
|...|...|..3|
|---+---+---|
|.3.|8.1|...|
|..5|.6.|...|
|71.|..9|...|
|---+---+---|
|...|...|.9.|
|..2|6..|8..|
|.9.|..4|..1|
*-----------*
*-----------*
|.2.|..3|.1.|
|5..|.4.|7..|
|...|...|..3|
|---+---+---|
|.3.|8.1|...|
|..5|.6.|...|
|71.|..9|...|
|---+---+---|
|...|...|.9.|
|..2|6..|8..|
|.9.|..4|..1|
*-----------*
*--------------------------------------------------------------------------------*
| 468 2 9 | 57 8-7 3 | 456 1 4568 |
| 5 68 3 | 1 4 26 | 7 268 9 |
| 468 7 1 | 9 28 256 | 2456 24568 3 |
|--------------------------+--------------------------+--------------------------|
| 2 3 46 | 8 57 1 | 9 4567 4567 |
| 9 48 5 | 3 6 27 | 1 2478 2478 |
| 7 1 68 | 4 25 9 | 3 2568 2568 |
|--------------------------+--------------------------+--------------------------|
| 3 456 47 | 257 1 8 | 2456 9 24567 |
| 1 45 2 | 6 9 57 | 8 3 457 |
| 68 9 78 | 257 3 4 | 256 2567 1 |
*--------------------------------------------------------------------------------*
Kraken Column 8 Digit 6 :
6 r3c8 - r3c6 = r2c6 - r2c2 = (6-5) r7c2 = r8c2 - r8c6 = r3c6 - (5=7) r1c4 - 7 r1c5;
6 r4c8 - 7 r4c8 = r4c9 - r8c9 = r8c6 - r5c6 = r4c5 - 7 r1c5;
|| r4c5 - 7 r1c5;
6 r6c8 - r6c3 = (6-4) r4c3 = r5c2 - r8c2 = (4-7) r8c9 = r8c6 - r5c6 = r4c5 - 7 r1c5;
6 r9c8 - r9c1 = (6-5) r7c2 = r8c2 - r8c6 = r3c6 - (5=7) r1c4 - 7 r1c5; => - 7 r1c5; stte
*--------------------------------------------------------------------------------*
|c468* 2 9 | 57 @78 3 |#456 1 @#4568 |
| 5 b68 3 | 1 4 26 | 7 a268 9 |
|c468 7 1 | 9 28 256 | 2456 24568 3 |
|--------------------------+--------------------------+--------------------------|
| 2 3 46 | 8 57 1 | 9 4567 4567 |
| 9 48 5 | 3 6 27 | 1 2478 2478 |
| 7 1 68 | 4 25 9 | 3 2568 2568 |
|--------------------------+--------------------------+--------------------------|
| 3 e456* 47* | 257 1 8 |#2456 9 #24567 |
| 1 45 2 | 6 9 57 | 8 3 457 |
|d68 9 78 | 257 3 4 | 256 2567 1 |
*--------------------------------------------------------------------------------*
+----------------+-------------------+----------------------+
| 468 2 9 | (57) 8-7 3 | 456 1 468(5) |
| 5 68 3 | 1 4 26 | 7 268 9 |
| 468 7 1 | 9 28 26(5) | 2456 24568 3 |
+----------------+-------------------+----------------------+
| 2 3 46 | 8 (57) 1 | 9 47 6(5) |
| 9 48 5 | 3 6 27 | 1 2478 2478 |
| 7 1 68 | 4 25 9 | 3 56 28 |
+----------------+-------------------+----------------------+
| 3 46(5) 47 | 257 1 8 | 2456 9 2467(5) |
| 1 4(5) 2 | 6 9 7(5) | 8 3 47(5) |
| 68 9 78 | 257 3 4 | 256 2567 1 |
+----------------+-------------------+----------------------+
+-------------------+----------------+----------------------+
| 48(6) 2 9 | 57 78 3 | 456 1 4568 |
| 5 (68) 3 | 1 4 2(6) | 7 28(6) 9 |
| 48(6) 7 1 | 9 28 25(6) | 2456 2458(6) 3 |
+-------------------+----------------+----------------------+
| 2 3 46 | 8 57 1 | 9 47 56 |
| 9 4-8 5 | 3 6 27 | 1 2478 2478 |
| 7 1 (68) | 4 25 9 | 3 5(6) 28 |
+-------------------+----------------+----------------------+
| 3 456 47 | 257 1 8 | 2456 9 24567 |
| 1 45 2 | 6 9 57 | 8 3 457 |
| 8(6) 9 78 | 257 3 4 | 256 257(6) 1 |
+-------------------+----------------+----------------------+
No wonder as I mentioned in an earlier comment : if a=A, a -> contradiction, A -> solution, then the exclusions due to the colors transport from (aA) [CW, GEM, RGT, ...] suffices to solve the puzzle without knowing which color is True/False. Here, 482 -> contradiction and 582 -> solution.gurth wrote:I found 714 solved the puzzle by singles only, without even knowing which colour was true.
The symmetries of the puzzle were obvious from the very start while filling the unsolved cells with candidates digit after digit : the clusters for the 2s and 4s were similar as well as for the 5s and 6s, the 7s and the 8s. I even suspected that you were responsible for the clumsy "scrambling" : 2<->4, 5<->6, 7<->8; Band1<->Band3, Stack1<->Stack2, C2<->C3, C5<->C6, R1<->R3, R4<->R6, C8<->C9, ... Finally, I took more or less into account these symmetries in the solutions I posted above !gurth wrote:Now that I've done my fair share of struggling with this one, I'll let the cat out of the bag: this puzzle is actually a scrambled version of a ST (Symmetry Technique) puzzle. Any readers interested in ST might like to unscramble and solve - I haven't yet tried myself, and it wouldn't really be fair for me to post a solution as I was the one who did the scrambling, even though the scrambling in this case will be very easy to unravel.
+-----------------------------------------------------------------------+
| 468 2 9 | a57 78 3 | 456 1 4568 |
| 5 f68 3 | 1 4 26 | 7 g268 9 |
| 468 7 1 | 9 28 b256 | 2456 24568 3 |
|-----------------------+-----------------------+-----------------------|
| 2 3 46 | 8 57 1 | 9 4567 4567 |
| 9 e48 5 | 3 6 27 | 1 2478 2478 |
| 7 1 68 | 4 25 9 | 3 2568 2568 |
|-----------------------+-----------------------+-----------------------|
| 3 E456 F47 | G257 1 8 | 2456 9 24567 |
| 1 d45 2 | 6 9 c57 | 8 3 457 |
| 68 9 78 | 257 3 4 | 256 2567 1 |
+-----------------------------------------------------------------------+
# 74 eliminations remain
=5r1c4 =5r8c6 =5r7c2 \ -> -5 r17c79
=4r8c2 =7r7c3 =2r7c4 \ -> -72 r 7c79
=8r5c2 =8r2c8 \ -> -8 r1 c79
-> [r17c79]=DP46 => -5 r1c4
daj95376 wrote:Couldn't follow eleven's logic, so I condensed a solution found by my solver.
gurth wrote:... this puzzle is actually a scrambled version of a ST (Symmetry Technique) puzzle.
eleven wrote:
Puzzles with digit symmetry are so rare, that checking it is a waste of time, but as JC mentioned, you might find it out, if you notice, that you always can make the same move for 2 digits.
However i could not find something good to crack the puzzle using symmetry.
Did you see a solution for the unscrambled puzzle ?
Moves like this one
5r8c6=5r3c6/6r7c2-(6=5)r8c2
don't help much and can be found without symmetry too (with one more link).