.
Thanks for your solution.
In my series of examples, I intended this as one of ORk-g-whips.
hidden-pairs-in-a-column: c8{n1 n8}{r1 r3} ==> r3c8≠9, r3c8≠6, r3c8≠4, r3c8≠3, r1c8≠9, r1c8≠4, r1c8≠3
whip[1]: r3n6{c3 .} ==> r2c1≠6, r2c2≠6, r2c3≠6
- Code: Select all
130 g-candidates, 545 csp-glinks and 326 non-csp glinks
+-------------------+-------------------+-------------------+
! 148 2 1389 ! 349 5 6 ! 7 18 349 !
! 457 34579 379 ! 1 8 349 ! 2 3469 3469 !
! 1468 3469 13689 ! 2 349 7 ! 349 18 5 !
+-------------------+-------------------+-------------------+
! 2 3469 369 ! 7 349 5 ! 8 349 1 !
! 145 3459 139 ! 8 6 1349 ! 349 7 2 !
! 1478 3479 13789 ! 349 12349 12349 ! 6 5 349 !
+-------------------+-------------------+-------------------+
! 3 67 5 ! 469 2479 249 ! 1 2469 8 !
! 67 1 2 ! 5 3479 8 ! 349 3469 3469 !
! 9 8 4 ! 36 123 123 ! 5 236 7 !
+-------------------+-------------------+-------------------+
OR2-anti-tridagon[12] for digits 3, 4 and 9 in blocks:
b2, with cells: r1c4, r2c6, r3c5
b3, with cells: r1c9, r2c8, r3c7
b5, with cells: r6c4, r5c6, r4c5
b6, with cells: r6c9, r5c7, r4c8
with 2 guardians: n6r2c8 n1r5c6
Trid-OR2-whip[5]: r8c1{n7 n6} - c9n6{r8 r2} - OR2{{n6r2c8 | n1r5c6}} - b4n1{r5c1 r6c3} - r6n8{c3 .} ==> r6c1≠7biv-chain[4]: c1n6{r3 r8} - b7n7{r8c1 r7c2} - r6n7{c2 c3} - b4n8{r6c3 r6c1} ==> r3c1≠8
Trid-OR2-ctr-whip[6]: c5n1{r9 r6} - c5n2{r6 r7} - c5n7{r7 r8} - r8c1{n7 n6} - c9n6{r8 r2} - OR2{{n1r5c6 n6r2c8 | .}} ==> r9c5≠3
Trid-OR2-whip[6]: c1n6{r3 r8} - c9n6{r8 r2} - OR2{{n6r2c8 | n1r5c6}} - b4n1{r5c1 r6c3} - r6n7{c3 c2} - r7c2{n7 .} ==> r3c1≠1hidden-pairs-in-a-row: r3{n1 n8}{c3 c8} ==> r3c3≠9, r3c3≠6, r3c3≠3
hidden-single-in-a-column ==> r4c3=6
Trid-OR2-gwhip[6]: c3n7{r2 r6} - r6n8{c3 c1} - r6n1{c1 c456} - OR2{{n1r5c6 | n6r2c8}} - b9n6{r7c8 r8c9} - r8c1{n6 .} ==> r2c1≠7singles ==> r8c1=7, r7c2=6, r3c1=6, r9c4=6, r7c5=7
hidden-pairs-in-a-column: c5{n1 n2}{r6 r9} ==> r6c5≠9, r6c5≠4, r6c5≠3
t-whip[5]: r9n3{c6 c8} - r8n3{c9 c5} - r4n3{c5 c2} - r3n3{c2 c7} - r5n3{c7 .} ==> r6c6≠3, r2c6≠3
whip[5]: c4n3{r6 r1} - r3n3{c5 c7} - r5n3{c7 c6} - r4n3{c5 c8} - r9n3{c8 .} ==> r6c2≠3
Trid-OR2-whip[8]: OR2{{n6r2c8 | n1r5c6}} - c6n3{r5 r9} - r9n1{c6 c5} - b8n2{r9c5 r7c6} - r7n4{c6 c4} - r1n4{c4 c1} - c1n1{r1 r6} - c1n8{r6 .} ==> r2c8≠4z-chain[3]: b3n4{r2c9 r3c7} - c5n4{r3 r4} - c8n4{r4 .} ==> r8c9≠4
g-whip[8]: c9n4{r6 r123} - r3n4{c7 c5} - b2n3{r3c5 r1c4} - r6c4{n3 n9} - r4c5{n9 n3} - r4c2{n3 n9} - b6n9{r4c8 r5c7} - r3n9{c7 .} ==> r6c2≠4
whip[7]: r8n9{c9 c5} - r4n9{c5 c2} - r3n9{c2 c7} - r5n9{c7 c6} - r2n9{c6 c3} - r2n7{c3 c2} - r6c2{n7 .} ==> r7c8≠9
whip[1]: b9n9{r8c9 .} ==> r8c5≠9
biv-chain[3]: b2n3{r1c4 r3c5} - r8c5{n3 n4} - r7c4{n4 n9} ==> r1c4≠9
t-whip[6]: b2n3{r1c4 r3c5} - r8c5{n3 n4} - b9n4{r8c7 r7c8} - r4n4{c8 c2} - r3c2{n4 n9} - r1n9{c3 .} ==> r1c9≠3
t-whip[6]: c6n3{r5 r9} - r8c5{n3 n4} - b9n4{r8c7 r7c8} - r4n4{c8 c2} - r3n4{c2 c7} - r5n4{c7 .} ==> r5c6≠9, r5c6≠1
At least one candidate of a previous Trid-OR2-relation has just been eliminated.
There remains a Trid-OR1-relation between candidates: n6r2c8
- Code: Select all
+-------------------+-------------------+-------------------+
! 148 2 1389 ! 34 5 6 ! 7 18 49 !
! 45 34579 379 ! 1 8 49 ! 2 369 3469 !
! 6 349 18 ! 2 349 7 ! 349 18 5 !
+-------------------+-------------------+-------------------+
! 2 349 6 ! 7 349 5 ! 8 349 1 !
! 145 3459 139 ! 8 6 34 ! 349 7 2 !
! 148 79 13789 ! 349 12 1249 ! 6 5 349 !
+-------------------+-------------------+-------------------+
! 3 6 5 ! 49 7 249 ! 1 24 8 !
! 7 1 2 ! 5 34 8 ! 349 3469 369 !
! 9 8 4 ! 6 12 123 ! 5 23 7 !
+-------------------+-------------------+-------------------+
Trid-ORk-relation with only one candidate => r2c8=6Note that this is also the "classical" tridagon elimination rule. But as the ORk-relation has already been identified previously, what remains of it is used as such.
The end is easy:
- Code: Select all
hidden-single-in-a-column ==> r8c9=6
whip[1]: b5n1{r6c6 .} ==> r6c1≠1, r6c3≠1
hidden-pairs-in-a-row: r6{n1 n2}{c5 c6} ==> r6c6≠9, r6c6≠4
biv-chain[3]: r5c6{n3 n4} - r2c6{n4 n9} - c5n9{r3 r4} ==> r4c5≠3
biv-chain[2]: c9n3{r2 r6} - r4n3{c8 c2} ==> r2c2≠3
biv-chain[2]: r1n3{c3 c4} - b5n3{r6c4 r5c6} ==> r5c3≠3
biv-chain[3]: r8c5{n3 n4} - r4c5{n4 n9} - c8n9{r4 r8} ==> r8c8≠3
finned-x-wing-in-columns: n3{c6 c8}{r9 r5} ==> r5c7≠3
x-wing-in-columns: n3{c5 c7}{r3 r8} ==> r3c2≠3
whip[1]: c2n3{r5 .} ==> r6c3≠3
biv-chain[3]: r5c7{n9 n4} - r5c6{n4 n3} - r6n3{c4 c9} ==> r6c9≠9
whip[1]: c9n9{r2 .} ==> r3c7≠9
biv-chain[2]: b5n9{r6c4 r4c5} - r3n9{c5 c2} ==> r6c2≠9
stte