Thanks for the answers.
Like Cenoman showed, the common way to solve it (manually) is with remote pairs.
Similar with oddagons:
- Code: Select all
*------------------------------------------------------------*
| 6 123 8 | 7 5 123 | 9 4 123 |
| 4 5 #123 | 6 *12-3 9 |#*12 8 7 |
| 1239 7 1239 | 123 4 8 | 6 5 123 |
|----------------------+-------------------+-----------------|
| 8 123 5 | 123 7 4 |#*12 6 9 |
| 123 9 6 | 8 #*123 5 | 4 7 #*12 |
| 7 4 #12 | 9 6 #12 | 5 3 8 |
|----------------------+-------------------+-----------------|
| 5 8 279 | 4 29 27 | 3 1 6 |
| 139 6 1379 | 5 19-3 137 | 8 2 4 |
| 123 123 4 | 123 8 6 | 7 9 5 |
*------------------------------------------------------------*
5-cell oddagon 12 (*), 3r25c5 => -3r8c5
7-cell oddagon 12 (#), 3r2c3=r5c5 => -3r2c5,
- Code: Select all
+----------------+----------------+----------------+
| 6 #12 8 | 7 5 #12 | 9 4 123 |
| 4 5 3 | 6 *12 9 |*12 8 7 |
| 129 7 9-12 | 123 4 8 | 6 5 123 |
+----------------+----------------+----------------+
| 8 3 5 | *12 7 4 |*12 6 9 |
| 12 9 6 | 8 3 5 | 4 7 12 |
| 7 4 #12 | 9 6 #12 | 5 3 8 |
+----------------+----------------+----------------+
| 5 8 29 | 4 29 7 | 3 1 6 |
| 19 6 7 | 5 19 3 | 8 2 4 |
| 123 12 4 | 12 8 6 | 7 9 5 |
+----------------+----------------+----------------+
Remote pair 12 (#), -12r3c3
(not needed: Remote pair 12 (*), -12r3c4)
stte
Nice spot of an impossible pattern by qiuyanzhe!
There are also other 3-digit patterns:
- Code: Select all
*-----------------------------------------------------------*
| 6 #123 8 | 7 5 #123 | 9 4 #123 |
| 4 5 123 | 6 123 9 | 12 8 7 |
| 1239 7 1239 | 123 4 8 | 6 5 123 |
|---------------------+-------------------+-----------------|
| 8 A12+3 5 | 123 7 4 | B12 6 9 |
| 123 9 6 | 8 123 5 | 4 7 A12 |
| 7 4 B12 | 9 6 A12 | 5 3 8 |
|---------------------+-------------------+-----------------|
| 5 8 279 | 4 29 27 | 3 1 6 |
| 139 6 1379 | 5 139 137 | 8 2 4 |
| 123 123 4 | 123 8 6 | 7 9 5 |
*-----------------------------------------------------------*
1 or 2 (A) in r4c2 implies Ar6c6 and r5c9, killing all A's in r1 => 3r4c2
Finish with remote pairs.
- Code: Select all
+--------------------+--------------------+--------------------+
| 6 #123 8 | 7 5 #123 | 9 4 #123 |
| 4* 5 123 | 6 #123 9 | #12 8 7 | ---
| 1239 7 #123+9 | #123 4 8 | 6 5 123 |
+--------------------+--------------------+--------------------+
| 8 #123 5 | #123 7 4 | #12 6 9 |
| #123 9 6 | 8 #123 5 | 4 7 #12 | ---
| 7 4 #12 | 9 6 #12 | 5 3 8 |
+--------------------+--------------------+--------------------+
| 5 8 279 | 4 29 27 | 3 1 6 |
| 139 6 1379 | 5 139 137 | 8 2 4 |
| 123 123 4 | 123 8 6 | 7 9 5 |
+--------------------+--------------------+--------------------+
| |
Impossible 15-cell pattern: r3c3=9
Finish with w-wing
I don't know that variation of yzfwsf's effective exocet, and how to apply the Mirror Check and Compatibility Test.
- Code: Select all
+-------------------+-------------------+-------------------+
| 6 123 8 | 7 5 *123 | 9 4 123 |
| 4 5 *123 | 6 *123 9 |*12 8 7 |
| 1239 7 *1239 |*123 4 8 | 6 5 123 |
+-------------------+-------------------+-------------------+
| 8 123 5 |*123 7 4 |*12 6 9 |
| 123 9 6 | 8 *123 5 | 4 7 12 |
| 7 4 *12 | 9 6 *12 | 5 3 8 |
+-------------------+-------------------+-------------------+
| 5 8 279 | 4 @29 27 | 3 1 6 |
| 139 6 1379 | 5 @139 137 | 8 2 4 |
|#123 #123 4 | 12+3 8 6 | 7 9 5 |
+-------------------+-------------------+-------------------+
But with some effort i can see that
1r9c12 -> 1r8c5 and 2r9c12 -> 2r7c5 (the hard part for me), and 3r9c12 -> 12r9c4
12r78c5 is not possible in b8 (kills both 9's), so we have 3r9c12 and
either a pair 21b8p27 or 12p8p57, implying 73r78c6 (still requiring a remote pair).
Can't see the other eliminations.