.
It can be solved by using two impossible patterns (in addition to tridagon): EL14c1 and EL10c28.
Note that there are lots more patterns available, but none that gives shorter chains.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 139 12357 3579 ! 4 579 6 ! 25789 25789 579 !
! 4 257 579 ! 1 8 579 ! 2579 6 3 !
! 6 8 579 ! 579 2 3 ! 14579 579 14579 !
+----------------------+----------------------+----------------------+
! 2 34 8 ! 579 5679 4579 ! 14579 3579 145679 !
! 5 6 34 ! 789 1 24789 ! 24789 23789 479 !
! 7 9 1 ! 3 56 2458 ! 2458 258 456 !
+----------------------+----------------------+----------------------+
! 39 357 6 ! 2 4 579 ! 579 1 8 !
! 189 1457 4579 ! 6 579 15789 ! 3 579 2 !
! 189 157 2 ! 5789 3 15789 ! 6 4 579 !
+----------------------+----------------------+----------------------+
178 candidates.
hidden-pairs-in-a-row: r3{n1 n4}{c7 c9} ==> r3c9≠9, r3c9≠7, r3c9≠5, r3c7≠9, r3c7≠7, r3c7≠5
The 3 patterns are identified here:
- Code: Select all
OR2-anti-tridagon[12] for digits 5, 7 and 9 in blocks:
b2, with cells (marked #): r1c5, r2c6, r3c4
b3, with cells (marked #): r1c9, r2c7, r3c8
b8, with cells (marked #): r8c5, r7c6, r9c4
b9, with cells (marked #): r8c8, r7c7, r9c9
with 2 guardians (in cells marked @): n2r2c7 n8r9c4
+----------------------+----------------------+----------------------+
! 139 12357 3579 ! 4 579# 6 ! 25789 25789 579# !
! 4 257 579 ! 1 8 579# ! 2579#@ 6 3 !
! 6 8 579 ! 579# 2 3 ! 14 579# 14 !
+----------------------+----------------------+----------------------+
! 2 34 8 ! 579 5679 4579 ! 14579 3579 145679 !
! 5 6 34 ! 789 1 24789 ! 24789 23789 479 !
! 7 9 1 ! 3 56 2458 ! 2458 258 456 !
+----------------------+----------------------+----------------------+
! 39 357 6 ! 2 4 579# ! 579# 1 8 !
! 189 1457 4579 ! 6 579# 15789 ! 3 579# 2 !
! 189 157 2 ! 5789#@ 3 15789 ! 6 4 579# !
+----------------------+----------------------+----------------------+
EL14c1s-OR3-relation for digits: 5, 7 and 9
in cells (marked #): (r4c8 r4c4 r4c6 r2c6 r3c8 r3c4 r1c9 r1c5 r8c8 r8c5 r9c9 r9c4 r7c7 r7c6)
with 3 guardians (in cells marked @) : n3r4c8 n4r4c6 n8r9c4
+----------------------+----------------------+----------------------+
! 139 12357 3579 ! 4 579# 6 ! 25789 25789 579# !
! 4 257 579 ! 1 8 579# ! 2579 6 3 !
! 6 8 579 ! 579# 2 3 ! 14 579# 14 !
+----------------------+----------------------+----------------------+
! 2 34 8 ! 579# 5679 4579#@ ! 14579 3579#@ 145679 !
! 5 6 34 ! 789 1 24789 ! 24789 23789 479 !
! 7 9 1 ! 3 56 2458 ! 2458 258 456 !
+----------------------+----------------------+----------------------+
! 39 357 6 ! 2 4 579# ! 579# 1 8 !
! 189 1457 4579 ! 6 579# 15789 ! 3 579# 2 !
! 189 157 2 ! 5789#@ 3 15789 ! 6 4 579# !
+----------------------+----------------------+----------------------+
EL10c28-OR4-relation for digits: 5, 7 and 9
in cells (marked #): (r3c3 r3c8 r2c6 r2c3 r2c7 r9c6 r7c6 r8c5 r8c3 r8c8)
with 4 guardians (in cells marked @) : n2r2c7 n1r9c6 n8r9c6 n4r8c3
+-------------------------+-------------------------+-------------------------+
! 139 12357 3579 ! 4 579 6 ! 25789 25789 579 !
! 4 257 579# ! 1 8 579# ! 2579#@ 6 3 !
! 6 8 579# ! 579 2 3 ! 14 579# 14 !
+-------------------------+-------------------------+-------------------------+
! 2 34 8 ! 579 5679 4579 ! 14579 3579 145679 !
! 5 6 34 ! 789 1 24789 ! 24789 23789 479 !
! 7 9 1 ! 3 56 2458 ! 2458 258 456 !
+-------------------------+-------------------------+-------------------------+
! 39 357 6 ! 2 4 579# ! 579 1 8 !
! 189 1457 4579#@ ! 6 579# 15789 ! 3 579# 2 !
! 189 157 2 ! 5789 3 15789#@ ! 6 4 579 !
+-------------------------+-------------------------+-------------------------+
Trid-OR2-whip[4]: r8n8{c1 c6} - OR2{{n8r9c4 | n2r2c7}} - c2n2{r2 r1} - r1n1{c2 .} ==> r8c1≠1t-whip[5]: r6n8{c8 c6} - c6n2{r6 r5} - c6n4{r5 r4} - r4c2{n4 n3} - r5n3{c3 .} ==> r5c8≠8
EL14c1s-OR3-whip[5]: r6n4{c9 c6} - c6n2{r6 r5} - b5n8{r5c6 r5c4} - OR3{{n8r9c4 n4r4c6 | n3r4c8}} - r4c2{n3 .} ==> r4c9≠4, r4c7≠4whip[7]: r1n8{c8 c7} - r1n2{c7 c2} - r1n1{c2 c1} - r1n3{c1 c3} - r5n3{c3 c8} - c8n2{r5 r6} - c8n8{r6 .} ==> r1c8≠5
whip[7]: r1n8{c8 c7} - r1n2{c7 c2} - r1n1{c2 c1} - r1n3{c1 c3} - r5n3{c3 c8} - c8n2{r5 r6} - c8n8{r6 .} ==> r1c8≠7
whip[7]: r1n8{c8 c7} - r1n2{c7 c2} - r1n1{c2 c1} - r1n3{c1 c3} - r5n3{c3 c8} - c8n2{r5 r6} - c8n8{r6 .} ==> r1c8≠9
whip[7]: c9n6{r4 r6} - r6c5{n6 n5} - r4c4{n5 n9} - r4c6{n9 n4} - b4n4{r4c2 r5c3} - c9n4{r5 r3} - c9n1{r3 .} ==> r4c9≠7
whip[7]: c9n6{r4 r6} - r6c5{n6 n5} - r4c4{n5 n7} - r4c6{n7 n4} - b4n4{r4c2 r5c3} - c9n4{r5 r3} - c9n1{r3 .} ==> r4c9≠9
Trid-OR2-ctr-whip[7]: c6n2{r5 r6} - c6n4{r6 r4} - b4n4{r4c2 r5c3} - r5n3{c3 c8} - r5n2{c8 c7} - r5n8{c7 c4} - OR2{{n8r9c4 n2r2c7 | .}} ==> r5c6≠7, r5c6≠9
Trid-OR2-whip[7]: c6n2{r5 r6} - b5n8{r6c6 r5c4} - OR2{{n8r9c4 | n2r2c7}} - c2n2{r2 r1} - b1n1{r1c2 r1c1} - r1n3{c1 c3} - r5c3{n3 .} ==> r5c6≠4biv-chain[4]: r5n3{c8 c3} - b4n4{r5c3 r4c2} - c6n4{r4 r6} - b5n2{r6c6 r5c6} ==> r5c8≠2
hidden-pairs-in-a-column: c8{n2 n8}{r1 r6} ==> r6c8≠5
Trid-OR2-whip[5]: r6c8{n2 n8} - r1c8{n8 n2} - OR2{{n2r2c7 | n8r9c4}} - r5n8{c4 c6} - r5n2{c6 .} ==> r6c7≠2whip[6]: r8n1{c6 c2} - c2n4{r8 r4} - c6n4{r4 r6} - c6n2{r6 r5} - c6n8{r5 r9} - r9n1{c6 .} ==> r8c6≠5
whip[6]: r8n1{c6 c2} - c2n4{r8 r4} - c6n4{r4 r6} - c6n2{r6 r5} - c6n8{r5 r9} - r9n1{c6 .} ==> r8c6≠7
whip[6]: r8n1{c6 c2} - c2n4{r8 r4} - c6n4{r4 r6} - c6n2{r6 r5} - c6n8{r5 r9} - r9n1{c6 .} ==> r8c6≠9
Trid-OR2-whip[6]: r4c2{n3 n4} - c6n4{r4 r6} - c6n2{r6 r5} - b5n8{r5c6 r5c4} - OR2{{n8r9c4 | n2r2c7}} - c2n2{r2 .} ==> r1c2≠3biv-chain[4]: c1n1{r9 r1} - c1n3{r1 r7} - c2n3{r7 r4} - c2n4{r4 r8} ==> r8c2≠1
singles ==> r8c6=1, r8c1=8
- Code: Select all
+-------------------+-------------------+-------------------+
! 139 1257 3579 ! 4 579 6 ! 25789 28 579 !
! 4 257 579 ! 1 8 579 ! 2579 6 3 !
! 6 8 579 ! 579 2 3 ! 14 579 14 !
+-------------------+-------------------+-------------------+
! 2 34 8 ! 579 5679 4579 ! 1579 3579 156 !
! 5 6 34 ! 789 1 28 ! 24789 379 479 !
! 7 9 1 ! 3 56 2458 ! 458 28 456 !
+-------------------+-------------------+-------------------+
! 39 357 6 ! 2 4 579 ! 579 1 8 !
! 8 457 4579 ! 6 579 1 ! 3 579 2 !
! 19 157 2 ! 5789 3 5789 ! 6 4 579 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL10c28-OR4-relation between candidates n2r2c7 n1r9c6 n8r9c6 n4r8c3 has just been eliminated.
There remains an EL10c28-OR3-relation between candidates: n2r2c7 n8r9c6 n4r8c3
Trid-OR2-whip[4]: OR2{{n8r9c4 | n2r2c7}} - r1n2{c8 c2} - r1n1{c2 c1} - r9c1{n1 .} ==> r9c4≠9
EL10c28-OR3-whip[5]: c6n2{r5 r6} - b6n2{r6c8 r5c7} - OR3{{n2r2c7 n8r9c6 | n4r8c3}} - r5n4{c3 c9} - r6n4{c7 .} ==> r5c6≠8singles ==> r5c6=2, r6c8=2, r1c8=8
whip[6]: c1n9{r9 r1} - c5n9{r1 r4} - c4n9{r5 r3} - c8n9{r3 r5} - r5n3{c8 c3} - c3n4{r5 .} ==> r8c3≠9
whip[1]: b7n9{r9c1 .} ==> r1c1≠9
biv-chain[5]: c1n9{r9 r7} - r7n3{c1 c2} - r4c2{n3 n4} - c6n4{r4 r6} - c6n8{r6 r9} ==> r9c6≠9
whip[6]: r1n3{c3 c1} - r7c1{n3 n9} - b8n9{r7c6 r8c5} - b9n9{r8c8 r9c9} - r1c9{n9 n7} - r1c5{n7 .} ==> r1c3≠5
whip[6]: r1n3{c3 c1} - r7c1{n3 n9} - b8n9{r7c6 r8c5} - b9n9{r8c8 r9c9} - r1c9{n9 n5} - r1c5{n5 .} ==> r1c3≠7
Trid-OR2-whip[6]: r5n8{c7 c4} - OR2{{n8r9c4 | n2r2c7}} - c2n2{r2 r1} - b1n1{r1c2 r1c1} - r1n3{c1 c3} - r5c3{n3 .} ==> r5c7≠4
Trid-OR2-whip[7]: c2n3{r4 r7} - c1n3{r7 r1} - r1n1{c1 c2} - c2n2{r1 r2} - OR2{{n2r2c7 | n8r9c4}} - b5n8{r5c4 r6c6} - c6n4{r6 .} ==> r4c2≠4singles ==> r4c2=3, r5c3=4, r8c2=4, r5c8=3, r1c3=3, r1c1=1, r9c1=9, r7c1=3, r9c2=1, r4c6=4
- Code: Select all
+----------------+----------------+----------------+
! 1 257 3 ! 4 579 6 ! 2579 8 579 !
! 4 257 579 ! 1 8 579 ! 2579 6 3 !
! 6 8 579 ! 579 2 3 ! 14 579 14 !
+----------------+----------------+----------------+
! 2 3 8 ! 579 5679 4 ! 1579 579 156 !
! 5 6 4 ! 789 1 2 ! 789 3 79 !
! 7 9 1 ! 3 56 58 ! 458 2 456 !
+----------------+----------------+----------------+
! 3 57 6 ! 2 4 579 ! 579 1 8 !
! 8 4 57 ! 6 579 1 ! 3 579 2 !
! 9 1 2 ! 578 3 578 ! 6 4 57 !
+----------------+----------------+----------------+
At least one candidate of a previous EL10c28-OR3-relation between candidates n2r2c7 n8r9c6 n4r8c3 has just been eliminated.
There remains an EL10c28-OR2-relation between candidates: n2r2c7 n8r9c6
finned-x-wing-in-rows: n9{r8 r1}{c5 c8} ==> r3c8≠9
naked-triplets-in-a-column: c9{r1 r5 r9}{n5 n9 n7} ==> r6c9≠5, r4c9≠5
finned-swordfish-in-columns: n9{c5 c8 c9}{r1 r8 r4} ==> r4c7≠9
biv-chain[3]: c9n5{r9 r1} - c9n9{r1 r5} - c8n9{r4 r8} ==> r8c8≠5
biv-chain[3]: b7n7{r7c2 r8c3} - r8c8{n7 n9} - b8n9{r8c5 r7c6} ==> r7c6≠7
EL10c28-OR2-whip[2]: OR2{{n2r2c7 | n8r9c6}} - c6n7{r9 .} ==> r2c7≠7z-chain[3]: b9n5{r7c7 r9c9} - c4n5{r9 r3} - c8n5{r3 .} ==> r4c7≠5
z-chain[3]: c8n5{r3 r4} - c4n5{r4 r9} - r8n5{c5 .} ==> r3c3≠5
biv-chain[2]: c9n5{r9 r1} - r3n5{c8 c4} ==> r9c4≠5
x-wing-in-columns: n5{c4 c8}{r3 r4} ==> r4c5≠5
z-chain[2]: b8n5{r9c6 r8c5} - c3n5{r8 .} ==> r2c6≠5
biv-chain[3]: r2c6{n7 n9} - r7n9{c6 c7} - r7n7{c7 c2} ==> r2c2≠7
z-chain[3]: c2n7{r1 r7} - r8n7{c3 c8} - b3n7{r3c8 .} ==> r1c5≠7
z-chain[3]: r1c5{n5 n9} - b3n9{r1c9 r2c7} - c7n2{r2 .} ==> r1c7≠5
z-chain[3]: c3n5{r8 r2} - r1n5{c2 c9} - r9n5{c9 .} ==> r8c5≠5
w1-tte