#45728, still more tridagon eliminations.

Post puzzles for others to solve here.

#45728, still more tridagon eliminations.

Postby denis_berthier » Thu Sep 01, 2022 3:45 am

.
If you liked the puzzle there: http://forum.enjoysudoku.com/many-tridagon-eliminations-t40287.html, you'll like the following.

Code: Select all
#45728 in mith's database of 63,137 min-expand puzzles
+-------+-------+-------+
! . 2 3 ! . 5 . ! 7 . 9 !
! . 5 . ! . . . ! . 3 2 !
! 7 . 9 ! 2 3 . ! . . . !
+-------+-------+-------+
! 2 3 . ! . . 4 ! . 7 5 !
! . 4 . ! . . . ! . 9 . !
! 9 . . ! . . . ! 3 . 4 !
+-------+-------+-------+
! . . . ! . 4 5 ! . . 7 !
! . 9 2 ! . 6 7 ! . . . !
! . 7 4 ! 1 2 . ! . . . !
+-------+-------+-------+
.23.5.7.9.5.....327.923....23...4.75.4.....9.9.....3.4....45..7.92.67....7412....;9598;223333
SER = 10.4


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1468  2     3     ! 468   5     168   ! 7     168   9     !
   ! 1468  5     168   ! 46789 1789  1689  ! 168   3     2     !
   ! 7     168   9     ! 2     3     168   ! 14568 14568 168   !
   +-------------------+-------------------+-------------------+
   ! 2     3     168   ! 689   189   4     ! 168   7     5     !
   ! 168   4     15678 ! 35678 178   12368 ! 1268  9     168   !
   ! 9     168   15678 ! 5678  178   1268  ! 3     1268  4     !
   +-------------------+-------------------+-------------------+
   ! 1368  168   168   ! 389   4     5     ! 12689 1268  7     !
   ! 1358  9     2     ! 38    6     7     ! 1458  1458  138   !
   ! 3568  7     4     ! 1     2     389   ! 5689  568   368   !
   +-------------------+-------------------+-------------------+
174 candidates


[Edit]: added number in the name
Last edited by denis_berthier on Mon Sep 05, 2022 9:08 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: still more tridagon eliminations.

Postby DEFISE » Thu Sep 01, 2022 9:47 am

After basics :

Code: Select all
|-------------------------------------------------------------|
| 1468*  2     3     | 468   5     168   | 7     168*   9     |
| 1468  5     168*   | 46789 1789  1689  | 168*   3     2     |
| 7     168*   9     | 2     3     168   | 45    45    168*   |
|-------------------------------------------------------------|
| 2     3     168*   | 689   189   4     | 168*   7     5     |
| 168*   4     57    | 35678 178   12368 | 1268  9     168*   |
| 9     168*   57    | 5678  178   1268  | 3     1268*  4     |
|-------------------------------------------------------------|
| 1368  168   168    | 389   4     5     | 12689 1268  7      |
| 1358  9     2      | 38    6     7     | 1458  1458  138    |
| 3568  7     4      | 1     2     389   | 5689  568   368    |
|-------------------------------------------------------------|

Tridagon diag: 1,6,8 in B1,B3,B4,B6 (cells tagged with *)
2 guardians : 4r1c1, 2r6c8

This partial whip from 9r9c6 see 2r6c8:
r7n9{c4 c7}- r7n2{c7 c8}

And this partial S3-whip also from 9r9c6 see 4r1c1:
b2n9{r2c6 NT:168p369}- r1c4{n6 n4}

So 9r9c6 is false. Then the puzzle is solvable in W7 :

Single(s): 9r9c7, 9r7c4, 9r4c5, 9r2c6, 3r7c1
Hidden pairs: 45c7r38 => -1r8c7 -8r8c7
whip[6]: c5n8{r5 r2}- c3n8{r2 r7}- c7n8{r7 r5}- r5n2{c7 c6}- r5n3{c6 c4}- r8c4{n3 .} => -8r4c4
Single(s): 6r4c4
whip[7]: r4n8{c7 c3}- c2n8{r6 r3}- c9n8{r3 r5}- r4c7{n8 n1}- r2c7{n1 n6}- r5n6{c7 c1}
- b1n6{r1c1 .} => -8r7c7
whip[7]: r4n1{c7 c3}- c2n1{r6 r3}- r2n1{c1 c5}- r1n1{c6 c8}- r6n1{c8 c6}- r6n2{c6 c8}- r7n2{c8 .} => -1r7c7
whip[4]: r5n6{c7 c1}- r9n6{c1 c9}- r7c7{n6 n2}- c8n2{r7 .} => -6r6c8
Single(s): 6r6c2
whip[7]: r4c7{n8 n1}- r4c3{n1 n8}- r7n8{c3 c2}- r3c2{n8 n1}- r2n1{c1 c5}- r6n1{c5 c6}- r6n2{c6 .} => -8r6c8
Box/Line: 8r6b5 => -8r5c4 -8r5c5 -8r5c6
whip[7]: r4c7{n1 n8}- r4c3{n8 n1}- r7n1{c3 c2}- r8n1{c1 c9}- r5c9{n1 n6}- r3c9{n6 n8}- r3c2{n8 .} => -1r6c8
Single(s): 2r6c8, 2r5c6, 3r5c4, 8r8c4, 4r1c4, 7r2c4, 5r6c4, 7r6c3, 5r5c3, 3r9c6, 4r2c1, 7r5c5, 2r7c7, 3r8c9
Box/Line: 1b9c8 => -1r1c8
whip[5]: r2n6{c3 c7}- r1c8{n6 n8}- r3c9{n8 n1}- r3c2{n1 n8}- r7n8{c2 .} => -6r7c3
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: still more tridagon eliminations.

Postby Cenoman » Thu Sep 01, 2022 9:01 pm

After lcls, 33 solved cells, 162 candidates
Code: Select all
 +---------------------+-------------------------+-----------------------+
 | *1468   2     3     |  468     5      168     |  7      *168    9     |
 |  1468   5    *168   |  46789   1789   1689    | *168     3      2     |
 |  7     *168   9     |  2       3      168     |  45      45    *168   |
 +---------------------+-------------------------+-----------------------+
 |  2      3    *168   |  689     189    4       | *168     7      5     |
 | *168    4     57    |  35678   178    12368   |  1268    9     *168   |
 |  9     *168   57    |  5678    178    1268    |  3      *1268   4     |
 +---------------------+-------------------------+-----------------------+
 |  1368   168   168   |  389     4      5       |  12689   1268   7     |
 |  1358   9     2     |  38      6      7       |  1458    1458   138   |
 |  3568   7     4     |  1       2      389     |  5689    568    368   |
 +---------------------+-------------------------+-----------------------+

TH (168)b1346*, having two guardians: 4r1c1, 2r6c8
1. (168=2)r136c6 - (2)r6c8 == (4)r1c1 - (4=168)r2c137 => -168 r2c6; lcls, 5 placements

2. (89=3)r78c4 - r5c4 = (3-2)r5c6 = r6c6 - (2)r6c8 == (4)r1c1 - r1c4 = (4-7)r2c4 = r2c5 - (7=189)r456c5 => -89 r4c4; lcls, 1 placement

3. (8)r78c4 = r9c6 - (8=162)r136c6 - (2)r6c8 == (4)r1c1 - r1c4 = r2c4 - (4=3698)r1478c4 => -8 r256c4

4. (2)r5c6 = r6c6 - (2)r6c8 == (4)r1c1 - (4=168)b2p139 => -168 r5c6

Resulting resolution state (39 solved cells, 119 candidates), hence a total of 37 eliminations (each of these could be shown eliminated by a chain containing the node (2)r6c8 == (4)r1c1)
Code: Select all
 +---------------------+--------------------+----------------------+
 |  1468   2     3     |  48    5     168   |  7      168    9     |
 |  1468   5     168   |  47    178   9     |  168    3      2     |
 |  7      168   9     |  2     3     168   |  45     45     168   |
 +---------------------+--------------------+----------------------+
 |  2      3     18    |  6     9     4     |  18     7      5     |
 |  168    4     57    |  357   178   23    |  1268   9      168   |
 |  9      168   57    |  57    18    128   |  3      1268   4     |
 +---------------------+--------------------+----------------------+
 |  3      168   168   |  9     4     5     |  1268   1268   7     |
 |  158    9     2     |  38    6     7     |  45     1458   138   |
 |  568    7     4     |  1     2     38    |  9      568    368   |
 +---------------------+--------------------+----------------------+


Complete solution of the puzzle:
After the first three steps above, using the TH pattern, the resolution state is:
Code: Select all
 +---------------------+---------------------+----------------------+
 |  1468   2     3     |  48    5     168    |  7      168    9     |
 |  1468   5     168   |  47    178   9      |  168    3      2     |
 |  7      168   9     |  2     3     168    |  45     45     168   |
 +---------------------+---------------------+----------------------+
 |  2      3     18    |  6     9     4      |  18     7      5     |
 |  168    4    *57    | *57+3  178   1238   |  1268   9      168   |
 |  9      168  *57    | *57    18    128    |  3      168+2  4     |
 +---------------------+---------------------+----------------------+
 |  3      168   168   |  9     4     5      |  1268   1268   7     |
 |  158    9     2     |  38    6     7      |  45     1458   138   |
 |  568    7     4     |  1     2     38     |  9      568    368   |
 +---------------------+---------------------+----------------------+

4; UR (57)r56c34 using single internal => +3 r5c4; lcls, 11 placements, among which +4r2c1.
5. Hence, TH guardian 4r1c1 is False => +2 r6c8, lcls, 4 placements

Code: Select all
 +-------------------+------------------+--------------------+
 | c168   2    3     |  4    5   b168   |  7     8-6   9     |
 |  4     5   *16-8  |  7   a18   9     | *168   3     2     |
 |  7    d18   9     |  2    3    16-8  |  45    45    168   |
 +-------------------+------------------+--------------------+
 |  2     3    18    |  6    9    4     |  18    7     5     |
 |  18    4    5     |  3    7    2     |  168   9     168   |
 |  9     6    7     |  5    18   18    |  3     2     4     |
 +-------------------+------------------+--------------------+
 |  3     18  *168   |  9    4    5     |  2    *168   7     |
 |  15    9    2     |  8    6    7     |  45    145   3     |
 |  568   7    4     |  1    2    3     |  9     568   68    |
 +-------------------+------------------+--------------------+

6. Skyscraper (6)r2c7 = r2c3 - r7c3 = r7c8 => -6 r1c8
7. W-Wing (8=1)r2c5 - r1c6 = r1c1 - (1=8)r3c2 => -8 r2c3, r3c6; ste
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: still more tridagon eliminations.

Postby pjb » Fri Sep 02, 2022 12:53 am

Similar to Cenoman:
After applying type 2 TH 4 times:
Code: Select all
 1468    2       3      | 468    5      168    | 7      168    9     
 1468    5       168    | 47     178    9      | 168    3      2     
 7       168     9      | 2      3      168    | 45     45     168   
------------------------+----------------------+---------------------
 2       3       168    | 68     9      4      | 168    7      5     
 168     4       57     | 35678  178    12368  | 1268   9      168   
 9       168     57     | 5678   178    1268   | 3      1268   4     
------------------------+----------------------+---------------------
 3       168     168    | 9      4      5      | 1268   1268   7     
 158     9       2      | 38     6      7      | 45     1458   138   
 568     7       4      | 1      2      38     | 9      568    368   

Then:
Type 1 unique rectangle of 45 at r38c78 => -45 r8c8
Type 3 unique rectangle of 57 at r56c34 => -68 r1c4 =>

Code: Select all
*168     2       3      | 4      5      168    | 7     *168    9     
 4       5      *168    | 7      18     9      |*168    3      2     
 7      *168     9      | 2      3      168    | 5      4     *168   
------------------------+----------------------+---------------------
 2       3      *168    | 68     9      4      |*168    7      5     
*168     4       57     | 3568   178    1238   | 1268   9     *168   
 9      *168     57     | 568    178    128    | 3     *2-168  4     
------------------------+----------------------+---------------------
 3       168     168    | 9      4      5      | 268    268    7     
 5       9       2      | 38     6      7      | 4      18     138   
 68      7       4      | 1      2      38     | 9      5      368   

Then type 1 TH => -168 r6c8
Finally (6)r1c1 = (6)r9c1 - (6)r7c3 = (6)r7c8 => -6 r1c8; stte

Phil
Last edited by pjb on Fri Sep 02, 2022 4:42 am, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: still more tridagon eliminations.

Postby denis_berthier » Fri Sep 02, 2022 4:36 am

Cenoman wrote:TH (168)b1346*, having two guardians: 4r1c1, 2r6c8
1. (168=2)r136c6 - (2)r6c8 == (4)r1c1 - (4=168)r2c137 => -168 r2c6; lcls, 5 placements
2. (89=3)r78c4 - r5c4 = (3-2)r5c6 = r6c6 - (2)r6c8 == (4)r1c1 - r1c4 = (4-7)r2c4 = r2c5 - (7=189)r456c5 => -89 r4c4; lcls, 1 placement
3. (8)r78c4 = r9c6 - (8=162)r136c6 - (2)r6c8 == (4)r1c1 - r1c4 = r2c4 - (4=3698)r1478c4 => -8 r256c4
4. (2)r5c6 = r6c6 - (2)r6c8 == (4)r1c1 - (4=168)b2p139 => -168 r5c6
Resulting resolution state (39 solved cells, 119 candidates), hence a total of 37 eliminations (each of these could be shown eliminated by a chain containing the node (2)r6c8 == (4)r1c1)


It doesn't really matter much, but I count 3+2+3+3 = 11 direct eliminations with TH. The other ones are circumstantial consequences of them.
.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: still more tridagon eliminations.

Postby denis_berthier » Fri Sep 02, 2022 9:20 am

.
Starting from the resolution state after Whips[1]:
Code: Select all
hidden-pairs-in-a-column: c3{n5 n7}{r5 r6} ==> r6c3≠8, r6c3≠6, r6c3≠1, r5c3≠8, r5c3≠6, r5c3≠1
hidden-pairs-in-a-row: r3{n4 n5}{c7 c8} ==> r3c8≠8, r3c8≠6, r3c8≠1, r3c7≠8, r3c7≠6, r3c7≠1
t-whip[4]: c6n3{r5 r9} - r8c4{n3 n8} - r7c4{n8 n9} - r4c4{n9 .} ==> r5c6≠6
whip[4]: r2n7{c4 c5} - c5n9{r2 r4} - r4c4{n9 n8} - c5n8{r4 .} ==> r2c4≠6
t-whip[5]: c6n2{r6 r5} - r5n3{c6 c4} - r8c4{n3 n8} - r7c4{n8 n9} - r4c4{n9 .} ==> r6c6≠6
whip[1]: c6n6{r3 .} ==> r1c4≠6
   +-------------------+-------------------+-------------------+
   ! 1468  2     3     ! 48    5     168   ! 7     168   9     !
   ! 1468  5     168   ! 4789  1789  1689  ! 168   3     2     !
   ! 7     168   9     ! 2     3     168   ! 45    45    168   !
   +-------------------+-------------------+-------------------+
   ! 2     3     168   ! 689   189   4     ! 168   7     5     !
   ! 168   4     57    ! 35678 178   1238  ! 1268  9     168   !
   ! 9     168   57    ! 5678  178   128   ! 3     1268  4     !
   +-------------------+-------------------+-------------------+
   ! 1368  168   168   ! 389   4     5     ! 12689 1268  7     !
   ! 1358  9     2     ! 38    6     7     ! 1458  1458  138   !
   ! 3568  7     4     ! 1     2     389   ! 5689  568   368   !
   +-------------------+-------------------+-------------------+


Code: Select all
OR2-anti-tridagon[12] (type antidiag) for digits 1, 6 and 8 in blocks:
        b1, with cells: r1c1, r2c3, r3c2
        b3, with cells: r1c8, r2c7, r3c9
        b4, with cells: r5c1, r4c3, r6c2
        b6, with cells: r5c9, r4c7, r6c8
with 2 guardians: n4r1c1 n2r6c8

OR2-forcing-whip-elim[4] based on OR2-anti-tridagon[12] for n2r6c8 and  n4r1c1:
   || n2r6c8 - partial-whip[1]: r5n2{c7 c6} -
   || n4r1c1 - partial-whip[2]: r1c4{n4 n8} - b8n8{r7c4 r9c6} -
 ==> r5c6≠8

OR2-forcing-whip-elim[4] based on OR2-anti-tridagon[12] for n4r1c1 and  n2r6c8:
   || n4r1c1 - partial-whip[1]: r1c4{n4 n8} -
   || n2r6c8 - partial-whip[2]: c7n2{r5 r7} - r7n9{c7 c4} -
 ==> r7c4≠8

z-chain[4]: b8n8{r8c4 r9c6} - r9n9{c6 c7} - c7n5{r9 r3} - c7n4{r3 .} ==> r8c7≠8

OR2-forcing-whip-elim[4] based on OR2-anti-tridagon[12] for n4r1c1 and  n2r6c8:
   || n4r1c1 - partial-whip[1]: r1c4{n4 n8} -
   || n2r6c8 - partial-whip[2]: r5n2{c7 c6} - r5n3{c6 c4} -
 ==> r5c4≠8

OR2-forcing-whip-elim[4] based on OR2-anti-tridagon[12] for n4r1c1 and  n2r6c8:
   || n4r1c1 - partial-whip[1]: r2n4{c1 c4} -
   || n2r6c8 - partial-whip[2]: c7n2{r5 r7} - r7n9{c7 c4} -
 ==> r2c4≠9

OR2-forcing-whip-elim[5] based on OR2-anti-tridagon[12] for n2r6c8 and  n4r1c1:
   || n2r6c8 - partial-whip[1]: c7n2{r5 r7} -
   || n4r1c1 - partial-whip[3]: r1c4{n4 n8} - b8n8{r8c4 r9c6} - b8n9{r9c6 r7c4} -
 ==> r7c7≠9

singles ==> r9c7=9, r7c4=9, r4c5=9, r2c6=9, r7c1=3
hidden-pairs-in-a-column: c7{n4 n5}{r3 r8} ==> r8c7≠1

OR2-forcing-whip-elim[5] based on OR2-anti-tridagon[12] for n2r6c8 and  n4r1c1:
   || n2r6c8 - partial-whip[2]: r5n2{c7 c6} - r5n3{c6 c4} -
   || n4r1c1 - partial-whip[2]: r1c4{n4 n8} - r4c4{n8 n6} -
 ==> r5c4≠6

OR2-forcing-whip-elim[5] based on OR2-anti-tridagon[12] for n2r6c8 and  n4r1c1:
   || n2r6c8 - partial-whip[1]: r5n2{c7 c6} -
   || n4r1c1 - partial-whip[3]: r1c4{n4 n8} - b8n8{r8c4 r9c6} - c6n3{r9 r5} -
 ==> r5c6≠1

z-chain[5]: r5n6{c9 c1} - r9n6{c1 c9} - r9n3{c9 c6} - r5c6{n3 n2} - b6n2{r5c7 .} ==> r6c8≠6

OR2-forcing-whip-elim[5] based on OR2-anti-tridagon[12] for n4r1c1 and  n2r6c8:
   || n4r1c1 - partial-whip[1]: r1c4{n4 n8} -
   || n2r6c8 - partial-whip[3]: r5n2{c7 c6} - c6n3{r5 r9} - r8c4{n3 n8} -
 ==> r6c4≠8, r4c4≠8

singles ==> r4c4=6, r6c2=6
naked-pairs-in-a-row: r6{c3 c4}{n5 n7} ==> r6c5≠7
z-chain[4]: c2n8{r7 r3} - c9n8{r3 r5} - r5n6{c9 c7} - c7n2{r5 .} ==> r7c7≠8
z-chain[4]: c2n1{r7 r3} - c9n1{r3 r5} - r5n6{c9 c7} - c7n2{r5 .} ==> r7c7≠1
z-chain[5]: c1n4{r2 r1} - b1n6{r1c1 r2c3} - r2c7{n6 n1} - r4n1{c7 c3} - b4n8{r4c3 .} ==> r2c1≠8
z-chain[5]: c1n4{r2 r1} - b1n6{r1c1 r2c3} - r2c7{n6 n8} - r4n8{c7 c3} - b4n1{r4c3 .} ==> r2c1≠1

OR2-forcing-whip-elim[4] based on OR2-anti-tridagon[12] for n2r6c8 and  n4r1c1:
   || n2r6c8 -
   || n4r1c1 - partial-whip[3]: r2c1{n4 n6} - b7n6{r9c1 r7c3} - c7n6{r7 r5} -
 ==> r5c7≠2

singles ==> r6c8=2, r5c6=2, r5c4=3, r8c4=8, r1c4=4, r2c4=7, r6c4=5, r6c3=7, r5c3=5, r9c6=3, r8c9=3, r5c5=7, r2c1=4, r7c7=2
whip[1]: b9n1{r8c8 .} ==> r1c8≠1
finned-x-wing-in-rows: n6{r7 r2}{c3 c8} ==> r1c8≠6
singles ==> r1c8=8, r9c9=8, r5c1=8, r4c3=1, r4c7=8
biv-chain[3]: b3n1{r2c7 r3c9} - r3c2{n1 n8} - b2n8{r3c6 r2c5} ==> r2c5≠1
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #45728, still more tridagon eliminations.

Postby Leren » Tue Sep 06, 2022 6:26 am

With my newly minted Type 1 Trigadon code: first basics and then this:

Code: Select all
*------------------------------------------------------*
| 1468 2    3   | 468     5     168   | 7     168  9   |
| 1468 5    168 | 46789   189-7 1689  | 168   3    2   |
| 7    168  9   | 2       3     168   | 45    45   168 |
|---------------+---------------------+----------------|
| 2    3    168 | 689     189   4     | 168   7    5   |
| 168  4   *57  |*3568-7  x78   12368 | 1268  9    168 |
| 9    168 *57  |*568-7  x178   1268  | 3     1268 4   |
|---------------+---------------------+----------------|
| 1368 168  168 | 389     4     5     | 12689 1268 7   |
| 1358 9    2   | 38      6     7     | 1458  1458 138 |
| 3568 7    4   | 1       2     389   | 5689  568  368 |
*------------------------------------------------------*

UR based AIC: r5c5 {7} = UR = r6c5 {7} => - 7 r2c5, r56c4. 3 placements and pointing triple;

Code: Select all
*----------------------------------------------------*
|*168   2    3   | 4    5   168  | 7     *168    9   |
| 4     5   *168 | 7    189 1689 |*168    3      2   |
| 7    *168  9   | 2    3   168  | 45     45    *168 |
|----------------+---------------+-------------------|
| 2     3   *168 | 689  189 4    |*168    7      5   |
|*168   4    57  | 3568 178 1238 | 1268   9     *168 |
| 9    *168  57  | 568  178 128  | 3     *2-168  4   |
|----------------+---------------+-------------------|
| 1368  168  168 | 389  4   5    | 12689  1268   7   |
| 1358  9    2   | 38   6   7    | 1458   1458   138 |
| 3568  7    4   | 1    2   389  | 5689   568    368 |
*----------------------------------------------------*

Type 1 Trigadon - Digits 168 in Boxes 1346.

Finishes off with a Skyscraper, a W Wing and basics. Works for me, no bugs .. yet :)

What's a Type 2 Trigadon and what's an Anti-Trigadon ?

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: #45728, still more tridagon eliminations.

Postby denis_berthier » Tue Sep 06, 2022 6:33 am

Leren wrote:What's a Type 2 Trigadon and what's an Anti-Trigadon ?


http://forum.enjoysudoku.com/the-tridagon-rule-t39859.html
I'm making no difference between types 1 and 2.
Anti-tridagons:
http://forum.enjoysudoku.com/the-tridagon-rule-t39859-95.html
are the basis for ORk-Forcing-Whips:
http://forum.enjoysudoku.com/or-k-forcing-whips-t40189.html
a very powerful tool for puzzles in T&E(3).
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #45728, still more tridagon eliminations.

Postby Leren » Tue Sep 06, 2022 9:38 am

Hi Denis, thanks for clarifying what an Anti-Trigagon is. It will take some time to understanding it fully but I''m patient.

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012


Return to Puzzles