#44951 in 63137 T&E(3) min-expands

Post puzzles for others to solve here.

#44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Thu Nov 24, 2022 9:20 am

.
Code: Select all
+-------+-------+-------+
! 1 . . ! . 5 6 ! . 8 . !
! . 5 . ! 1 8 . ! . . . !
! 8 6 . ! 7 . 3 ! . 5 . !
+-------+-------+-------+
! . . 1 ! . . . ! 6 . 3 !
! 6 3 . ! . 7 1 ! 8 . 5 !
! . 8 . ! 3 6 . ! . . . !
+-------+-------+-------+
! . . . ! 6 1 . ! 5 . . !
! . 7 6 ! . . . ! . 1 2 !
! . 1 . ! . . . ! 4 . . !
+-------+-------+-------+
1...56.8..5.18....86.7.3.5...1...6.363..718.5.8.36.......61.5...76....12.1....4..;9431;179266
SER = 10.5


Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 1      249    23479  ! 249    5      6      ! 2379   8      479    !
   ! 23479  5      23479  ! 1      8      249    ! 2379   234679 4679   !
   ! 8      6      249    ! 7      249    3      ! 129    5      149    !
   +----------------------+----------------------+----------------------+
   ! 24579  249    1      ! 24589  249    24589  ! 6      2479   3      !
   ! 6      3      249    ! 249    7      1      ! 8      249    5      !
   ! 24579  8      24579  ! 3      6      2459   ! 1279   2479   1479   !
   +----------------------+----------------------+----------------------+
   ! 2349   249    23489  ! 6      1      2479   ! 5      379    789    !
   ! 3459   7      6      ! 4589   349    4589   ! 39     1      2      !
   ! 2359   1      23589  ! 259    239    2579   ! 4      3679   6789   !
   +----------------------+----------------------+----------------------+
183 candidates.

There's an anti-tridagon available, but good luck for finding enough tridagon eliminations.
Code: Select all
OR5-anti-tridagon[12] for digits 2, 4 and 9 in blocks:
        b1, with cells: r1c2, r2c1, r3c3
        b2, with cells: r1c4, r2c6, r3c5
        b4, with cells: r4c2, r6c1, r5c3
        b5, with cells: r4c5, r6c6, r5c4
with 5 guardians: n3r2c1 n7r2c1 n5r6c1 n7r6c1 n5r6c6
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby totuan » Sat Nov 26, 2022 12:02 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 1      249    37     | 249    5      6      | 37     8      49     |
 | 23479  5      23479  | 1      8      249    | 2379   2349   6      |
 | 8      6      249    | 7      249    3      | 129    5      149    |
 |----------------------+----------------------+----------------------|
 |*2459   249    1      |#24589  249   #24589  | 6      7      3      |
 | 6      3      249    | 249    7      1      | 8      249    5      |
 | 2479-5 8      24579  | 3      6      2459   | 129    249    149    |
 |----------------------+----------------------+----------------------|
 | 2349   249    23489  | 6      1      2479   | 5      39     78     |
 |*3459   7      6      |#4589   349   #4589   | 39     1      2      |
 | 239-5  1      23589  | 259    239    2579   | 4      6      78     |
 *--------------------------------------------------------------------*

My ugly path for this one – quite hard:
01: UR (58)r48c46 => (5)r4c1=(5)r8c1 => r69c1<>5

Code: Select all
 *-----------------------------------------------------------------------------*
 | 1      *249#    23479#  |*249#    5       6       | 2379    8       479     |
 |*23479   5       23479#  | 1       8      *249#    | 2379    234679  4679    |
 | 8       6      *249#    | 7      *249#    3       | 129     5       149     |
 |-------------------------+-------------------------+-------------------------|
 | 2459-7 *249#    1       | 24589  *249#    24589   | 6       2479    3       |
 | 6       3       249#    |*249#    7       1       | 8       249     5       |
 |*2479#   8      *24579   | 3       6      *2459#   | 1279    2479    1479    |
 |-------------------------+-------------------------+-------------------------|
 | 2349#   249#    23489   | 6       1       2479#   | 5       379     789     |
 | 3459    7       6       | 4589    349     4589    | 39      1       2       |
 | 239     1       23589   | 259     239     2579    | 4       3679    6789    |
 *-----------------------------------------------------------------------------*

02: Present as diagram: r4c1<>7, some singles
Tridagon (249)B1245 => (5)r6c6=(7)r26c1=(3)r2c1
3’s R1 & R8 => 3r2c1 lead to 3r8c5
E1 impossible pattern (249)

Code: Select all
(5)r6c6------------r6c3=r4c1*      E1’s impossible pattern (249)
 ||                 |                         ||
(7)r26c1*            ------------------------(5)r6c6
 ||                                           ||
 ||                                          (7)r6c1*
 ||                                           ||
 ||           -------------------------------(3)r7c1/r123c3
 ||          |                                ||
(3)r2c1/r8c5---r9c15=(368-7)r9c389=(7)r9c6---(7)7c6

E1’s impossible pattern – prove:
Hidden Text: Show
Code: Select all
 *---------------------------------------------------*
 | .       249     2479    | 249     .       .       |
 | .       .       2479    | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | 249     249     .       | .       .      A249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*
Let A=2 => as below
 *---------------------------------------------------*
 | .      e249     2479    |d249     .       .       |
 | .       .       2479    | .       .       49      |
 | .       .       249     | .      c249     .       |
 |-------------------------+-------------------------|
 | .      f249     .       | .      b249     .       |
 | .       .      B249     |a249     .       .       |
 | 249     .       .       | .       .       49      |
 |-------------------------+-------------------------|
 | 49      49      .       | .       .       2       |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*
2’s: a=b-c=d-e=f  => B<>2 => lcs 2’s B1 => e<>2 => f=2 => b<>2 => a=2 => d<>2 => c=2
=> as below
 *---------------------------------------------------*
 | .      *49      2479    |*49      .       .       |
 | .       .       2479    | .       .      *49      |
 | .       .       249     | .       2       .       |
 |-------------------------+-------------------------|
 | .       2       .       | .       49      .       |
 | .       .        49     | 2       .       .       |
 |*49      .       .       | .       .      *49      |
 |-------------------------+-------------------------|
 |*49     *49      .       | .       .       2       |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*
Oddagon (49) * marked cells => impossible pattern. The same result for A=49

Code: Select all
 *--------------------------------------------------------------------*
 | 1     #249    37     |#249    5      6      | 37     8      49     |
 | 23479  5     #2479-3 | 1      8     #249    | 279-3 #2349   6      |
 | 8      6     #249    | 7     #249    3      | 129    5      149    |
 |----------------------+----------------------+----------------------|
 | 2459  #249    1      | 24589 #249   #24589  | 6      7      3      |
 | 6      3     #249    |#249    7      1      | 8     #249    5      |
 | 2479   8      24579  | 3      6      2459   | 129    249    149    |
 |----------------------+----------------------+----------------------|
 | 2349  #249    23489  | 6      1     #2479   | 5      39     78     |
 | 3459   7      6      | 4589   349    4589   | 39     1      2      |
 | 239    1      23589  | 259    239    2579   | 4      6      78     |
 *--------------------------------------------------------------------*

03: Present as diagram: => r2c37<>3
Tridagon (249)B1245 => (5)r6c6=(7)r6c1=(3)r2c1=(7)r2c1
AUR (37)r12c37 => (7)r2c1=(3)r2c18
E2 impossible pattern

Code: Select all
(3)r2c1*                              AUR(37)r12c37   
 ||                                       ||
 ||                                      (3)r2c8*       
 ||                                       ||                       
(5)r6c6-r6c3=r4c1-r8c1=(58-3)r79c3=r12c3-(3)r2c1   E2’s impossible pattern (249)   
 ||                                       ||                        ||
 ||      --------------------------------(7)r2c1                   (3)r2c8*
 ||     |                                                           ||
(7)r2c1---r6c1=(7-5)r6c3=(5)r4c1/r6c6--r8c1=(58)r79c3-(8=7)r7c9----(7)r7c6
 ||                                   |                             ||
 ||                                   |-(5)r16c8=(5-8)r8c4=(8)r4c4-(8)r4c6
 ||                                   |                             ||
(7)r6c1-(7)r2c1==(3)r2c18*             ----------------------------(5)r4c6

E2’s impossible pattern – prove:
Hidden Text: Show
Code: Select all
 *-----------------------------------------------------------*
 | .     249   .     | 249   .     .     | .     .     .     |
 | .     .     249   | .     .     249   | .     249   .     |
 | .     .     249   | .     249   .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     249   .     | .     249   249   | .     .     .     |
 | .     .     249   | 249   .     .     | .     249   .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     249   .     | .     .     A249  | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*
Let A=2 => as below
 *-----------------------------------------------------------*
 | .    e249   .     |d249   .     .     | .     .     .     |
 | .     .    g249   | .     .     49    | .     249   .     |
 | .     .     249   | .    c249   .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .    f249   .     | .    b249   49    | .     .     .     |
 | .     .    B249   |a249   .     .     | .     249   .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     49    .     | .     .     2     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*
2’s: a=b-c=d-e=f 
=> B<>2 => lcs 2’s B1 => e<>2 => f=2 => b<>2 => a=2 => d<>2 => c=2 => g=2
 *-----------------------------------------------------------*
 | .    *49   .      |*49    .     .     | .     .     .     |
 | .     .     2     | .     .    *49    | .    *49    .     |
 | .     .    *49    | .     2     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     2     .     | .    49     49    | .     .     .     |
 | .     .    *49    | 2     .     .     | .    *49    .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     49    .     | .     .     2     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*
Oddagon (49) * marked cells => impossible pattern. The same result for A=49

Code: Select all
 *--------------------------------------------------------------------*
 | 1     #249   a37     |#249    5      6      |b37     8      49     |
 | 2479-3 5     #2479   | 1      8     #249    | 279  c#2349   6      |
 | 8      6     #249    | 7     #249    3      | 129    5      149    |
 |----------------------+----------------------+----------------------|
 | 2459  #249    1      | 24589 3249    24589  | 6      7      3      |
 | 6      3     #249    |#249    7      1      | 8     #249    5      |
 | 2479   8      24579  | 3      6     #2459   | 129    249    149    |
 |----------------------+----------------------+----------------------|
 | 2349  #249    2489-3 | 6      1     #2479   | 5     d39     78     |
 | 3459   7      6      | 4589   349    4589   | 39     1      2      |
 | 239    1      23589  | 259    239    2579   | 4      6      78     |
 *--------------------------------------------------------------------*

04: 3’s a=b-c=d => r7c3<>3
05: Present as diagram: r2c1<>3, some singles
E3 impossible pattern => (37)r2c3=(3)r2c8=(7)r7c6=(5)r6c6
E3 is proved the same as E1 & E2
Code: Select all
(3)r2c8*
 ||
(5)r6c6-r6c3=r4c1-r8c1-(5-3)r9c3=r1c3*
 ||
(7)r7c6-(7=8)r7c9-r7c3=(8-3)r9c3=r1c3*
 ||
(37)r12c3*

The puzzle now downgrade to ER7.1 and I’m lazy to find a nice finish way :D

Thanks for the puzzle!
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #44951 in 63137 T&E(3) min-expands

Postby marek stefanik » Sat Nov 26, 2022 12:32 pm

At the beginnining, we can make progress with TH:
Code: Select all
.-------------------.-------------------.--------------------.
| 1     *249 b23479 |*249    5    6     | 2379  8       479  |
|a#23479 5   b23479 | 1      8   #249   | 2379  234679  4679 |
| 8      6   *249   | 7     *249  3     | 129   5       149  |
:-------------------+-------------------+--------------------:
| 24579 *249  1     | 24589 *249  24589 | 6     2479    3    |
| 6      3   *249   |*249    7    1     | 8     249     5    |
|e#24579 8   d24579 | 3      6  e#2459  | 1279  2479    1479 |
:-------------------+-------------------+--------------------:
| 2349   249 c23489 | 6      1    2479  | 5     379     789  |
| 3459   7    6     | 4589   349  4589  | 39    1       2    |
| 2359   1   c23589 | 259    239  2579  | 4     3679    6789 |
'-------------------'-------------------'--------------------'
* is a TH 8-loop => each of 249 can only appear once in #
3# – 3r12c3 = (38–5)r79c3 = 5r6c3 – 5# => 3# and 5# are mutually exclusive (note that so are the two 5s in #) and they force (3|5|8)r9c3

Code: Select all
.-------------------.-------------------.--------------------.
| 1      249  23479 | 249    5    6     | 2379  8       479  |
|#23479  5    23479 | 1      8   #249   | 2379  234679  4679 |
| 8      6    249   | 7      249  3     | 129   5       149  |
:-------------------+-------------------+--------------------:
|b24579  249  1     | 24589  249  24589 | 6    a2479    3    |
| 6      3    249   | 249    7    1     | 8     249     5    |
|#24579  8    24579 | 3      6   #2459  | 1279  2479    1479 |
:-------------------+-------------------+--------------------:
|d2349  d249 d23489 | 6      1   e2479  | 5     39–7    789  |
|d3459   7    6     | 4589   349  4589  | 39    1       2    |
|d2359   1   c23589 | 259    239  2579  | 4     3679    6789 |
'-------------------'-------------------'--------------------'
7r4c8 = 7r4c1 – 7# = [(3|5)&249#, (3|5|8)r9c3, 249b7# \ r7c16] – (249=7)r7c6 => (7# = 7r7c6) & –7r7c8

Code: Select all
.-------------------.-------------------.--------------------.
| 1      249  23479 | 249    5    6     | 2379  8       479  |
|#23479  5    23479 | 1      8   #249   | 2379 *234679  4679 |
| 8      6    249   | 7      249  3     | 129   5       149  |
:-------------------+-------------------+--------------------:
| 2459–7 249  1     | 24589  249  24589 | 6     2479    3    |
| 6      3    249   | 249    7    1     | 8     249     5    |
|#24579  8   e24579 | 3      6   #2459  | 1279  2479    1479 |
:-------------------+-------------------+--------------------:
|*2349  *249 *23489 | 6      1   a2479  | 5    *39     b78   |
|*3459   7    6     | 4589   349  4589  | 39    1       2    |
|*2359   1   d23589 | 259    239  2579  | 4     67     c678  |
'-------------------'-------------------'--------------------'
7# = 7r7c6 – (7=8)r7c9 – 8r9c9 = (8–3|5)r9c3 = [3c8b7 \ r27c1 & 5r6c3] – (3|5=2479)# => –7r4c1

At this point, the skfr of this puzzle is 9.3 and YZF_Sudoku finds a way through with complex nets.
However, it is an absolute Tal's forest and I cannot recommend this approach to anyone solving the puzzle manually (huge respect to totuan for finding a way).
Instead, one can relabel in hope to reduce the difficulty (r1 gives 7.6, but b4 gives 8.9) or consider the remaining combinations of TH guardians (mostly) one by one.

37c1: Show
Half way through the singles, we encounter this 4-chromatic pattern:
Code: Select all
.---------------.-------------------.--------------.
| 1   #249  7   |*249    5    6     | 3   8   *49  |
| 3    5   #249 | 1      8   #249   | 27 *249  6   |
| 8    6   #249 | 7     #249  3     | 12  5    149 |
:---------------+-------------------+--------------:
|#249 #249  1   | 24589 #249  24589 | 6   7    3   |
| 6    3   #249 |*249    7    1     | 8  *249  5   |
| 7    8    5   | 3      6    249   | 12  249  149 |
:---------------+-------------------+--------------:
| 249  249  8   | 6      1    2479  | 5   3    7   |
| 45   7    6   | 458    34   458   | 9   1    2   |
| 259  1    3   | 259    29   2579  | 4   6    78  |
'---------------'-------------------'--------------'
the digit in r4c5 is also in r5c3, r1c2, and r2c6, leaving * as a bivalue oddagon, ie. contra.
57c1: Show
UR 58r48c46, externals 5r48c1 => –5r69c1
or without uniqueness
Code: Select all
.-----------------.-------------------.----------------.
| 1    #249  3    |*249    5    6     | 7    8    *49  |
| 7     5   #249  | 1      8   #249   | 239 *3–249 6   |
| 8     6   #249  | 7     #249  3     | 129  5     149 |
:-----------------+-------------------+----------------:
|#249  #249  1    | 24589 #249  24589 | 6    7     3   |
| 6     3   #249  |*249    7    1     | 8   *249   5   |
| 5     8    7    | 3      6    249   | 129  249   149 |
:-----------------+-------------------+----------------:
| 2349  249  2489 | 6      1    2479  | 5    39    78  |
| 349   7    6    | 4589   349  4589  | 39   1     2   |
| 239   1    2589 | 259    239  2579  | 4    6     78  |
'-----------------'-------------------'----------------'
same pattern => 3r2c8
Basics to 9r2c6, hence 9r4c5, then to contradiction with singles.
5c6, 7c1: Show
Code: Select all
.-------------------.---------------.-----------------.
| 1     #249  37    |#249  5    6   | 37    8    c49  |
| 2479   5   f249–37| 1    8    249 | 2379  3–249 6   |
| 8      6   *249   | 7   e249  3   |*129   5    *149 |
:-------------------+---------------+-----------------:
| 5     a249  1     | 8    249  249 | 6     7     3   |
| 6      3   *249   |b249  7    1   | 8    *249   5   |
| 2479   8    2479  | 3    6    5   | 129   249   149 |
:-------------------+---------------+-----------------:
| 2349  #249  8     | 6    1   d249 | 5     39    7   |
| 349    7    6     | 5    349  8   | 39    1     2   |
| 239    1    5     |#29   239  7   | 4     6     8   |
'-------------------'---------------'-----------------'
the digit in r4c2 is also in r5c4, r1c9, r7c6 (by skyscraper # on the remaining digits), r3c5, and r2c3 => –37r2c3
finned x-wing * r35 \ c38b3 on the remaining digits => –249r2c8
Then 24r7c6, 49r1c9 => 4r4c2, contra. with singles.
Just 7c1: Show
Code: Select all
.------------------.-------------------.-----------------.
| 1     249  37    | 249    5    6     | 37    8     49  |
|#249   5    23479 | 1      8   #249   | 2379  3–249 6   |
| 8     6    249   | 7      249  3     | 129   5     149 |
:------------------+-------------------+-----------------:
| 249   249  1     | 24589  249  24589 | 6     7     3   |
| 6     3    249   | 249    7    1     | 8    *249   5   |
|#7     8    5     | 3      6   #249   |*129  *249  *149 |
:------------------+-------------------+-----------------:
| 2349  249  23489 | 6      1    2479  | 5     39    78  |
| 3459  7    6     | 4589   349  4589  | 39    1     2   |
| 2359  1    2389  | 259    239  2579  | 4     6     78  |
'------------------'-------------------'-----------------'
249b6# \ r26c8 => –249r2c8
Then 4r2\# => –4r6c6, btte.

Marek
Last edited by marek stefanik on Mon Nov 28, 2022 9:14 am, edited 1 time in total.
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: #44951 in 63137 T&E(3) min-expands

Postby totuan » Sat Nov 26, 2022 4:42 pm

For reducing the complex of my third move on previous post.
Code: Select all
 *--------------------------------------------------------------------*
 | 1      249    37     | 249    5      6      | 37     8      49     |
 | 23479  5      23479  | 1      8      249    | 2379   2349   6      |
 | 8      6      249    | 7      249    3      | 129    5      149    |
 |----------------------+----------------------+----------------------|
 | 2459   249    1      | 58-249 249    24589  | 6      7      3      |
 | 6      3      249    | 249    7      1      | 8      249    5      |
 | 2479   8      24579  | 3      6      2459   | 129    249    149    |
 |----------------------+----------------------+----------------------|
 | 2349   249    23489  | 6      1      2479   | 5      39     78     |
 | 3459   7      6      | 4589   349    4589   | 39     1      2      |
 | 239    1      23589  | 259    239    2579   | 4      6      78     |
 *--------------------------------------------------------------------*

03: (58)r4c46=(5)r4c1-r6c3/r8c1=r6c6/r9c3-r9c46/r8c6=(5-8)r8c4=r4c4 => r4c4<>249
Code: Select all
 *--------------------------------------------------------------------*
 | 1     #249    37     |#249    5      6      | 37     8      49     |
 | 23479  5     #2479-3 | 1      8     #249    | 279-3 #2349   6      |
 | 8      6     #249    | 7     #249    3      | 129    5      149    |
 |----------------------+----------------------+----------------------|
 | 2459  #249    1      | 58    #249   #24589  | 6      7      3      |
 | 6      3     #249    |#249    7      1      | 8     #249    5      |
 | 2479   8      24579  | 3      6      2459   | 129    249    149    |
 |----------------------+----------------------+----------------------|
 | 2349  #249    23489  | 6      1     #2479   | 5      39     78     |
 | 3459   7      6      | 4589   349    4589   | 39     1      2      |
 | 239    1      23589  | 259    239    2579   | 4      6      78     |
 *--------------------------------------------------------------------*

04: Present as diagram: => r2c37<>3
AUR (37)r12c37 => (7)r2c1=(3)r2c18 or (37)r2c1=(3)r2c8
E2 impossible pattern (see proving on my previous post)

Code: Select all
E2’s impossible pattern (249)
 ||
(3)r2c8*
 ||
(7)r7c6-(7=8)r7c9-r9c9=(8-5)r9c3=(5-7)r6c3=r6c1--(7)r2c1==(3)r2c18*
 ||                                             |
(58)r4c46-(5)r4c1=(5-7)r6c3=r6c1----------------
 ||
(37)r12c3-(37)r2c1==(3)r2c8*

Then the same as my previous post.

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Sun Nov 27, 2022 5:08 am

.
Thanks for your solutions.
Yes, this is a very hard puzzle. I proposed it as a case where identifying the anti-tridagon pattern doesn't help much. But it's also a case where eleven replacement does wonders - not general eleven replacement, but the very restrictive form of it that tries only the 3 cells of a tridagon block.
I'm currently running computations showing (until now) that when the anti-tridagon chain rules are not enough, they can always be supplemented with such tridagon-restricted replacement.

Totuan: it seems other (more complex) impossible patterns appear when an anti-tridagon is present. How frequent this is remains to be explored. Is your E2 "eleven pattern" isomorphic to the only one that I identified (http://forum.enjoysudoku.com/chromatic-patterns-t39885-50.html) as requiring T&E(3) to be proven contradictory in his list here: http://forum.enjoysudoku.com/chromatic-patterns-t39885-41.html?
I haven't followed this approach of finding other contradictory patterns, because they are hard to code.

Marek, good idea to use intermediary relations, though your cryptic notation is illegible to me: 7r4c8 = 7r4c1 – 7# = [(3|5)&249#, (3|5|8)r9c3, 249b7# \ r7c16] – (249=7)r7c6 => 7# = 7r7c6 => –7r7c8

After singles and whips[1], there is indeed a Trid-OR5-whip elimination, with a very long whip:
z-chain[3]: c8n6{r9 r2} - c8n3{r2 r7} - r8c7{n3 .} ==> r9c8≠9
z-chain[5]: c4n8{r4 r8} - c4n5{r8 r9} - c3n5{r9 r6} - r4n5{c1 c6} - r4n8{c6 .} ==> r4c4≠2, r4c4≠9, r4c4≠4
Trid-OR5-whip[10]: r8c7{n9 n3} - r1n3{c7 c3} - r2n3{c3 c8} - r7c8{n3 n7} - r7c9{n7 n8} - r9n8{c9 c3} - c3n5{r9 r6} - c3n7{r6 r2} - OR5{{n7r2c1 n3r2c1 n5r6c1 n5r6c6 | n7r6c1}} - b6n7{r6c7 .} ==> r9c9≠9
After that there's no elimination available with chains of length ≤ 12.

My solution will completely discard the Tridagon elimination and rely on replacement:
Code: Select all
z-chain[3]: c8n6{r9 r2} - c8n3{r2 r7} - r8c7{n3 .} ==> r9c8≠9
z-chain[5]: c4n8{r4 r8} - c4n5{r8 r9} - c3n5{r9 r6} - r4n5{c1 c6} - r4n8{c6 .} ==> r4c4≠2, r4c4≠9, r4c4≠4

+----------------------+----------------------+----------------------+
! 1      249    23479  ! 249    5      6      ! 2379   8      479    !
! 23479  5      23479  ! 1      8      249    ! 2379   234679 4679   !
! 8      6      249    ! 7      249    3      ! 129    5      149    !
+----------------------+----------------------+----------------------+
! 24579  249    1      ! 58     249    24589  ! 6      2479   3      !
! 6      3      249    ! 249    7      1      ! 8      249    5      !
! 24579  8      24579  ! 3      6      2459   ! 1279   2479   1479   !
+----------------------+----------------------+----------------------+
! 2349   249    23489  ! 6      1      2479   ! 5      379    789    !
! 3459   7      6      ! 4589   349    4589   ! 39     1      2      !
! 2359   1      23589  ! 259    239    2579   ! 4      367    6789   !
+----------------------+----------------------+----------------------+

Code: Select all
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE FOR GENERAL TRIDAGON *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 2
   +----------------------+----------------------+----------------------+
   ! 1      249    23479  ! 9      5      6      ! 23479  8      2479   !
   ! 23479  5      23479  ! 1      8      4      ! 23479  234679 24679  !
   ! 8      6      249    ! 7      2      3      ! 1249   5      1249   !
   +----------------------+----------------------+----------------------+
   ! 24579  249    1      ! 58     249    24589  ! 6      2479   3      !
   ! 6      3      249    ! 249    7      1      ! 8      249    5      !
   ! 24579  8      24579  ! 3      6      2459   ! 12479  2479   12479  !
   +----------------------+----------------------+----------------------+
   ! 2349   249    23489  ! 6      1      2479   ! 5      23479  24789  !
   ! 23459  7      6      ! 24589  2349   24589  ! 2349   1      249    !
   ! 23459  1      234589 ! 2459   2349   24579  ! 249    367    246789 !
   +----------------------+----------------------+----------------------+


The rest is routine solving in W6:
Code: Select all
finned-x-wing-in-columns: n9{c2 c5}{r4 r7} ==> r7c6≠9
finned-x-wing-in-rows: n9{r5 r3}{c3 c8} ==> r2c8≠9
biv-chain[2]: c2n9{r7 r4} - r5n9{c3 c8} ==> r7c8≠9
whip[1]: c8n9{r4 .} ==> r6c7≠9, r6c9≠9
t-whip[4]: c9n8{r7 r9} - r9n6{c9 c8} - r9n7{c8 c6} - r7c6{n7 .} ==> r7c9≠2
z-chain[5]: r3c3{n9 n4} - r5c3{n4 n2} - r5c4{n2 n4} - r4c5{n4 n9} - c2n9{r4 .} ==> r9c3≠9, r7c3≠9
z-chain[5]: r4c5{n9 n4} - r4c2{n4 n2} - r1c2{n2 n4} - r3c3{n4 n9} - r5n9{c3 .} ==> r4c8≠9
t-whip[5]: c2n9{r7 r4} - r4c5{n9 n4} - r5c4{n4 n2} - r5c3{n2 n4} - b1n4{r3c3 .} ==> r7c2≠4
biv-chain[4]: r5n9{c8 c3} - r3c3{n9 n4} - c2n4{r1 r4} - b5n4{r4c5 r5c4} ==> r5c8≠4
z-chain[5]: c2n4{r4 r1} - r3c3{n4 n9} - r5c3{n9 n2} - r4c2{n2 n9} - r4c5{n9 .} ==> r4c1≠4
z-chain[5]: b6n4{r6c9 r4c8} - r4c5{n4 n9} - r4c2{n9 n2} - r5c3{n2 n9} - r3c3{n9 .} ==> r6c3≠4
t-whip[5]: c9n8{r7 r9} - r9n6{c9 c8} - r9n7{c8 c6} - r7c6{n7 n2} - r7c2{n2 .} ==> r7c9≠9
whip[1]: r7n9{c1 .} ==> r8c1≠9, r9c1≠9
z-chain[6]: r5n4{c3 c4} - r4c5{n4 n9} - r4c2{n9 n2} - r5c3{n2 n9} - r3c3{n9 n4} - c2n4{r1 .} ==> r6c1≠4
whip[1]: r6n4{c9 .} ==> r4c8≠4
whip[1]: c1n4{r9 .} ==> r7c3≠4, r9c3≠4
t-whip[6]: r7c6{n7 n2} - b5n2{r4c6 r5c4} - b5n4{r5c4 r4c5} - c2n4{r4 r1} - c2n2{r1 r4} - r4c8{n2 .} ==> r7c8≠7
hidden-triplets-in-a-block: b9{n6 n7 n8}{r9c9 r9c8 r7c9} ==> r9c9≠9, r9c9≠4, r9c9≠2, r9c8≠3, r7c9≠4
finned-x-wing-in-columns: n3{c8 c1}{r2 r7} ==> r7c3≠3
hidden-pairs-in-a-row: r7{n3 n4}{c1 c8} ==> r7c8≠2, r7c1≠9, r7c1≠2
hidden-single-in-a-block ==> r7c2=9
t-whip[2]: r7n2{c3 c6} - b5n2{r4c6 .} ==> r5c3≠2
naked-pairs-in-a-column: c3{r3 r5}{n4 n9} ==> r6c3≠9, r2c3≠9, r1c3≠4
biv-chain[3]: r4c2{n2 n4} - r5c3{n4 n9} - r5c8{n9 n2} ==> r4c8≠2
singles ==> r4c8=7, r9c8=6, r2c9=6
whip[1]: c7n7{r1 .} ==> r1c9≠7
naked-pairs-in-a-row: r1{c2 c9}{n2 n4} ==> r1c7≠4, r1c7≠2, r1c3≠2
finned-x-wing-in-rows: n2{r7 r4}{c6 c3} ==> r6c3≠2
biv-chain[3]: r1n3{c3 c7} - b3n7{r1c7 r2c7} - r2n9{c7 c1} ==> r2c1≠3
whip[1]: c1n3{r9 .} ==> r9c3≠3
biv-chain[3]: c9n9{r8 r3} - r3c3{n9 n4} - r1n4{c2 c9} ==> r8c9≠4
biv-chain[4]: r4c5{n9 n4} - b4n4{r4c2 r5c3} - c3n9{r5 r3} - c9n9{r3 r8} ==> r8c5≠9
biv-chain[3]: r8c5{n4 n3} - r9n3{c5 c1} - r7c1{n3 n4} ==> r8c1≠4
biv-chain[4]: r5c8{n2 n9} - c3n9{r5 r3} - b1n4{r3c3 r1c2} - r1n2{c2 c9} ==> r6c9≠2, r2c8≠2
stte


After replacement, a puzzle that was in T&E(3) is now solved in T&E(1). This is consistent with my analysis of replacement as being in T&E(2) complexity-wise.
.
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby eleven » Mon Nov 28, 2022 12:05 am

denis_berthier wrote:Totuan: it seems other (more complex) impossible patterns appear when an anti-tridagon is present. How frequent this is remains to be explored. Is your E2 "eleven pattern" isomorphic to the only one that I identified (http://forum.enjoysudoku.com/chromatic-patterns-t39885-50.html) as requiring T&E(3) to be proven contradictory in his list here: http://forum.enjoysudoku.com/chromatic-patterns-t39885-41.html?.

No, those patterns were found and proved (above) by totuan.
I had only calculated patterns in 2 bands (and with 3 digits).
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: #44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Mon Nov 28, 2022 3:08 am

eleven wrote:
denis_berthier wrote:Totuan: it seems other (more complex) impossible patterns appear when an anti-tridagon is present. How frequent this is remains to be explored. Is your E2 "eleven pattern" isomorphic to the only one that I identified (http://forum.enjoysudoku.com/chromatic-patterns-t39885-50.html) as requiring T&E(3) to be proven contradictory in his list here: http://forum.enjoysudoku.com/chromatic-patterns-t39885-41.html?.

No, those patterns were found and proved (above) by totuan.
I had only calculated patterns in 2 bands (and with 3 digits).

Right. Now I remember they spanned only 2 bands.
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Mon Nov 28, 2022 3:29 am

totuan wrote:E2 impossible pattern
Code: Select all
 *-----------------------------------------------------------*
 | .     249   .     | 249   .     .     | .     .     .     |
 | .     .     249   | .     .     249   | .     249   .     |
 | .     .     249   | .     249   .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     249   .     | .     249   249   | .     .     .     |
 | .     .     249   | 249   .     .     | .     249   .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     249   .     | .     .     A249  | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 *-----------------------------------------------------------*

This pattern can be proven contradictory in T&E(2).
The direct proof in T&E(2) is ugly but it requires no work.

Load SudoRules with only T&E(2° selected in the config file and type:
Code: Select all
(solve-k-digit-pattern-string 3
".1.1.......1..1.1...1.1.....1..11.....11...1...........1...1.....................")

(I've deleted some useless tries)
Hidden Text: Show
*** STARTING T&E IN CONTEXT 0 at depth 1 with 0 csp-variables solved and 639 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 0 with 0 csp-variables solved and 639 candidates remaining

GENERATING CONTEXT 1 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c6.
*** STARTING T&E IN CONTEXT 1 at depth 1 with 0 csp-variables solved and 639 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 1 AT DEPTH 1, with 0 csp-variables solved and 639 candidates remaining
GENERATING CONTEXT 5 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c4.
naked-single ==> r2c6=2
naked-single ==> r3c5=3
naked-single ==> r4c6=1
naked-single ==> r4c5=2
naked-single ==> r4c2=3
naked-single ==> r1c2=2
naked-single ==> r3c3=1
naked-single ==> r2c3=3
naked-single ==> r2c8=1
naked-single ==> r5c3=2
naked-single ==> r5c8=3
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 5. RETRACTING CANDIDATE n1r1c4 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 639 candidates remaining.

GENERATING CONTEXT 6 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n2r1c4.
naked-single ==> r2c6=1
naked-single ==> r3c5=3
naked-single ==> r4c6=2
naked-single ==> r4c5=1
naked-single ==> r4c2=3
naked-single ==> r1c2=1
naked-single ==> r3c3=2
naked-single ==> r2c3=3
naked-single ==> r2c8=2
naked-single ==> r5c3=1
naked-single ==> r5c8=3
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 6. RETRACTING CANDIDATE n2r1c4 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 639 candidates remaining.
naked-single ==> r1c4=3

GENERATING CONTEXT 7 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r2c3.
naked-single ==> r2c6=2
naked-single ==> r2c8=3
naked-single ==> r3c5=1
naked-single ==> r4c6=1
naked-single ==> r5c4=2
naked-single ==> r4c5=3
naked-single ==> r4c2=2
NO POSSIBLE VALUE for csp-variable 112 IN CONTEXT 7. RETRACTING CANDIDATE n1r2c3 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 639 candidates remaining.
GENERATING CONTEXT 8 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n2r2c3.
naked-single ==> r2c6=1
naked-single ==> r2c8=3
naked-single ==> r3c5=2
naked-single ==> r4c6=2
naked-single ==> r5c4=1
naked-single ==> r4c5=3
naked-single ==> r4c2=1
NO POSSIBLE VALUE for csp-variable 112 IN CONTEXT 8. RETRACTING CANDIDATE n2r2c3 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 639 candidates remaining.
naked-single ==> r2c3=3

GENERATING CONTEXT 9 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r2c6.
naked-single ==> r4c6=2
naked-single ==> r5c4=1
naked-single ==> r4c5=3
naked-single ==> r4c2=1
naked-single ==> r1c2=2
NO POSSIBLE VALUE for csp-variable 172 IN CONTEXT 9. RETRACTING CANDIDATE n1r2c6 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 639 candidates remaining.
naked-single ==> r2c6=2
naked-single ==> r4c6=1
naked-single ==> r5c4=2
naked-single ==> r5c3=1
naked-single ==> r5c8=3
naked-single ==> r3c3=2
naked-single ==> r1c2=1
naked-single ==> r7c2=2
naked-single ==> r4c2=3
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 1. RETRACTING CANDIDATE n3r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 638 candidates remaining.
GENERATING CONTEXT 10 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n2r7c6.

*** STARTING T&E IN CONTEXT 10 at depth 1 with 0 csp-variables solved and 638 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 10 AT DEPTH 1, with 0 csp-variables solved and 638 candidates remaining
GENERATING CONTEXT 14 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n1r1c4.
naked-single ==> r2c6=3
naked-single ==> r3c5=2
naked-single ==> r4c6=1
naked-single ==> r4c5=3
naked-single ==> r4c2=2
naked-single ==> r1c2=3
naked-single ==> r3c3=1
naked-single ==> r2c3=2
naked-single ==> r2c8=1
naked-single ==> r5c3=3
naked-single ==> r5c8=2
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 14. RETRACTING CANDIDATE n1r1c4 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 0 csp-variables solved and 638 candidates remaining.
GENERATING CONTEXT 16 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n3r1c4.
naked-single ==> r2c6=1
naked-single ==> r3c5=2
naked-single ==> r4c6=3
naked-single ==> r4c5=1
naked-single ==> r4c2=2
naked-single ==> r1c2=1
naked-single ==> r3c3=3
naked-single ==> r2c3=2
naked-single ==> r2c8=3
naked-single ==> r5c3=1
naked-single ==> r5c8=2
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 16. RETRACTING CANDIDATE n3r1c4 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 0 csp-variables solved and 638 candidates remaining.
naked-single ==> r1c4=2

GENERATING CONTEXT 17 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n1r2c3.
naked-single ==> r2c6=3
naked-single ==> r2c8=2
naked-single ==> r3c5=1
naked-single ==> r4c6=1
naked-single ==> r5c4=3
naked-single ==> r4c5=2
naked-single ==> r4c2=3
NO POSSIBLE VALUE for csp-variable 112 IN CONTEXT 17. RETRACTING CANDIDATE n1r2c3 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 0 csp-variables solved and 638 candidates remaining.
GENERATING CONTEXT 19 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n3r2c3.
naked-single ==> r2c6=1
naked-single ==> r2c8=2
naked-single ==> r3c5=3
naked-single ==> r4c6=3
naked-single ==> r5c4=1
naked-single ==> r4c5=2
naked-single ==> r4c2=1
NO POSSIBLE VALUE for csp-variable 112 IN CONTEXT 19. RETRACTING CANDIDATE n3r2c3 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 0 csp-variables solved and 638 candidates remaining.
naked-single ==> r2c3=2

GENERATING CONTEXT 20 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n1r2c6.
naked-single ==> r4c6=3
naked-single ==> r5c4=1
naked-single ==> r4c5=2
naked-single ==> r4c2=1
naked-single ==> r1c2=3
NO POSSIBLE VALUE for csp-variable 172 IN CONTEXT 20. RETRACTING CANDIDATE n1r2c6 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 0 csp-variables solved and 638 candidates remaining.
naked-single ==> r2c6=3
naked-single ==> r4c6=1
naked-single ==> r5c4=3
naked-single ==> r5c3=1
naked-single ==> r5c8=2
naked-single ==> r3c3=3
naked-single ==> r1c2=1
naked-single ==> r7c2=3
naked-single ==> r4c2=2
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 10. RETRACTING CANDIDATE n2r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 637 candidates remaining.
naked-single ==> r7c6=1

GENERATING CONTEXT 21 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c2.
*** STARTING T&E IN CONTEXT 21 at depth 1 with 1 csp-variables solved and 616 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 21 AT DEPTH 1, with 1 csp-variables solved and 616 candidates remaining
GENERATING CONTEXT 22 AT DEPTH 2, SON OF CONTEXT 21, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=2
naked-single ==> r4c6=3
naked-single ==> r2c6=2
naked-single ==> r1c4=3
naked-single ==> r3c5=1
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 22. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 21.

BACK IN CONTEXT 21 with 1 csp-variables solved and 616 candidates remaining.
naked-single ==> r1c2=2
naked-single ==> r4c2=1

GENERATING CONTEXT 24 AT DEPTH 2, SON OF CONTEXT 21, FROM HYPOTHESIS n3r1c4.
naked-single ==> r2c6=2
naked-single ==> r3c5=1
naked-single ==> r3c3=3
naked-single ==> r2c3=1
naked-single ==> r2c8=3
naked-single ==> r5c3=2
naked-single ==> r5c4=1
NO POSSIBLE VALUE for csp-variable 158 IN CONTEXT 24. RETRACTING CANDIDATE n3r1c4 FROM CONTEXT 21.

BACK IN CONTEXT 21 with 1 csp-variables solved and 616 candidates remaining.
naked-single ==> r1c4=1

GENERATING CONTEXT 25 AT DEPTH 2, SON OF CONTEXT 21, FROM HYPOTHESIS n1r2c3.
naked-single ==> r3c3=3
naked-single ==> r3c5=2
naked-single ==> r2c6=3
naked-single ==> r2c8=2
naked-single ==> r4c6=2
naked-single ==> r5c4=3
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 25. RETRACTING CANDIDATE n1r2c3 FROM CONTEXT 21.

BACK IN CONTEXT 21 with 1 csp-variables solved and 616 candidates remaining.
naked-single ==> r2c3=3
naked-single ==> r5c3=2
naked-single ==> r5c4=3
naked-single ==> r5c8=1
naked-single ==> r2c8=2
NO POSSIBLE VALUE for csp-variable 126 IN CONTEXT 21. RETRACTING CANDIDATE n3r7c2 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 1 csp-variables solved and 615 candidates remaining.
naked-single ==> r7c2=2

GENERATING CONTEXT 26 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r5c8.
*** STARTING T&E IN CONTEXT 26 at depth 1 with 2 csp-variables solved and 595 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 26 AT DEPTH 1, with 2 csp-variables solved and 595 candidates remaining
GENERATING CONTEXT 27 AT DEPTH 2, SON OF CONTEXT 26, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=3
naked-single ==> r4c6=2
naked-single ==> r2c6=3
naked-single ==> r1c4=2
naked-single ==> r3c5=1
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 27. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 26.

BACK IN CONTEXT 26 with 2 csp-variables solved and 595 candidates remaining.
naked-single ==> r1c2=3
naked-single ==> r4c2=1
naked-single ==> r5c3=2
naked-single ==> r5c4=1
naked-single ==> r1c4=2
naked-single ==> r2c6=3
naked-single ==> r4c6=2
naked-single ==> r4c5=3
naked-single ==> r3c5=1
NO POSSIBLE VALUE for csp-variable 133 IN CONTEXT 26. RETRACTING CANDIDATE n3r5c8 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 2 csp-variables solved and 594 candidates remaining.
GENERATING CONTEXT 28 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n2r5c8.
*** STARTING T&E IN CONTEXT 28 at depth 1 with 2 csp-variables solved and 594 candidates remaining ***
STARTING PHASE 1 IN CONTEXT 28 AT DEPTH 1, with 2 csp-variables solved and 594 candidates remaining
GENERATING CONTEXT 29 AT DEPTH 2, SON OF CONTEXT 28, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=3
naked-single ==> r4c6=2
naked-single ==> r2c6=3
naked-single ==> r1c4=2
naked-single ==> r3c5=1
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 29. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 28.

BACK IN CONTEXT 28 with 2 csp-variables solved and 594 candidates remaining.
naked-single ==> r1c2=3
naked-single ==> r4c2=1
naked-single ==> r5c3=3
naked-single ==> r5c4=1
naked-single ==> r1c4=2
naked-single ==> r2c6=3
naked-single ==> r4c6=2
naked-single ==> r4c5=3
naked-single ==> r3c5=1
naked-single ==> r3c3=2
naked-single ==> r2c3=1
NO POSSIBLE VALUE for csp-variable 128 IN CONTEXT 28. RETRACTING CANDIDATE n2r5c8 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 2 csp-variables solved and 593 candidates remaining.
naked-single ==> r5c8=1

GENERATING CONTEXT 30 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r5c4.
naked-single ==> r4c6=2
naked-single ==> r4c5=1
naked-single ==> r4c2=3
naked-single ==> r1c2=1
naked-single ==> r1c4=2
naked-single ==> r3c5=3
NO POSSIBLE VALUE for csp-variable 126 IN CONTEXT 30. RETRACTING CANDIDATE n3r5c4 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 3 csp-variables solved and 573 candidates remaining.
naked-single ==> r5c4=2
naked-single ==> r4c6=3
naked-single ==> r2c6=2
naked-single ==> r2c8=3
naked-single ==> r2c3=1
naked-single ==> r1c2=3
naked-single ==> r1c4=1
naked-single ==> r3c5=3
naked-single ==> r3c3=2
naked-single ==> r4c2=1

PUZZLE 0 HAS NO SOLUTION : NO CANDIDATE FOR RC-CELL r4c5
MOST COMPLEX RULE TRIED = NS
Puzzle .1.1.......1..1.1...1.1.....1..11.....11...1...........1...1.....................
:
init-time = 0.0s, solve-time = 0.4s, total-time = 0.41s
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Mon Nov 28, 2022 4:43 am

totuan wrote:E1 impossible pattern (249)
Code: Select all
 *---------------------------------------------------*
 | .       249     2479    | 249     .       .       |
 | .       .       2479    | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | 249     249     .       | .       .       249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

Here, I have some doubt: did you intend the 7s to be in the pattern? I think no, but let's see what we can do in both cases.

If not, then the following 3-digit pattern can be proven contradictory in (restricted) T&E(2) (proof as before):
Code: Select all
 *---------------------------------------------------*
 | .       249     249     | 249     .       .       |
 | .       .       249     | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | 249     249     .       | .       .       249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

Hidden Text: Show
Code: Select all
(Beware that the pattern string must be properly competed with the missing stack on the right)
(solve-k-digit-pattern-string 3    ".111.......1..1.....1.1.....1..1......11.....1....1...11...1.....................")
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = T&E(BRT, 2)
***  Using CLIPS 6.32-r823
***  Running on MacBookPro 16'' M1Max 2021, 64GB LPDDR5, MacOS 12.5
***  Download from: https://github.com/denis-berthier/CSP-Rules-V2.1
***********************************************************************************************
.111.......1..1.....1.1.....1..1......11.....1....1...11...1.....................
Resolution state after Singles:
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123456789 123       123       ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123       ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123       ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123456789 123       123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123       ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123       123456789 123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123       123       123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+

633 candidates, 0 csp-links and 0 links. Density = 0.0%
Starting non trivial part of solution.

*** STARTING T&E IN CONTEXT 0 at depth 1 with 0 csp-variables solved and 633 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 0 with 0 csp-variables solved and 633 candidates remaining


GENERATING CONTEXT 1 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c6.

*** STARTING T&E IN CONTEXT 1 at depth 1 with 0 csp-variables solved and 633 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 1 AT DEPTH 1, with 0 csp-variables solved and 633 candidates remaining


GENERATING CONTEXT 2 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c2.
naked-single ==> r7c2=2
naked-single ==> r4c2=3
naked-single ==> r7c1=1
naked-single ==> r6c1=2
naked-single ==> r5c3=1
naked-single ==> r6c6=1
naked-single ==> r2c6=2
naked-single ==> r1c4=3
naked-single ==> r1c3=2
naked-single ==> r3c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 2. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 633 candidates remaining.


GENERATING CONTEXT 3 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n2r1c2.
naked-single ==> r7c2=1
naked-single ==> r4c2=3
naked-single ==> r7c1=2
naked-single ==> r6c1=1
naked-single ==> r5c3=2
naked-single ==> r6c6=2
naked-single ==> r2c6=1
naked-single ==> r1c4=3
naked-single ==> r1c3=1
naked-single ==> r3c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 3. RETRACTING CANDIDATE n2r1c2 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 633 candidates remaining.

naked-single ==> r1c2=3

GENERATING CONTEXT 4 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c3.
naked-single ==> r3c3=2
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 4. RETRACTING CANDIDATE n1r1c3 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 633 candidates remaining.

naked-single ==> r1c3=2
naked-single ==> r3c3=1
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 1. RETRACTING CANDIDATE n3r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 632 candidates remaining.


GENERATING CONTEXT 5 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n2r7c6.

*** STARTING T&E IN CONTEXT 5 at depth 1 with 0 csp-variables solved and 632 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 5 AT DEPTH 1, with 0 csp-variables solved and 632 candidates remaining


GENERATING CONTEXT 6 AT DEPTH 2, SON OF CONTEXT 5, FROM HYPOTHESIS n1r1c2.
naked-single ==> r7c2=3
naked-single ==> r4c2=2
naked-single ==> r7c1=1
naked-single ==> r6c1=3
naked-single ==> r5c3=1
naked-single ==> r6c6=1
naked-single ==> r2c6=3
naked-single ==> r1c4=2
naked-single ==> r1c3=3
naked-single ==> r3c3=2
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 6. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 5.

BACK IN CONTEXT 5 with 0 csp-variables solved and 632 candidates remaining.


GENERATING CONTEXT 7 AT DEPTH 2, SON OF CONTEXT 5, FROM HYPOTHESIS n2r1c2.
NO CONTRADICTION FOUND IN CONTEXT 7.
BACK IN CONTEXT 5 with 0 csp-variables solved and 632 candidates remaining.


GENERATING CONTEXT 8 AT DEPTH 2, SON OF CONTEXT 5, FROM HYPOTHESIS n3r1c2.
naked-single ==> r7c2=1
naked-single ==> r4c2=2
naked-single ==> r7c1=3
naked-single ==> r6c1=1
naked-single ==> r5c3=3
naked-single ==> r6c6=3
naked-single ==> r2c6=1
naked-single ==> r1c4=2
naked-single ==> r1c3=1
naked-single ==> r3c3=2
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 8. RETRACTING CANDIDATE n3r1c2 FROM CONTEXT 5.

BACK IN CONTEXT 5 with 0 csp-variables solved and 632 candidates remaining.

naked-single ==> r1c2=2

GENERATING CONTEXT 9 AT DEPTH 2, SON OF CONTEXT 5, FROM HYPOTHESIS n1r1c3.
naked-single ==> r3c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 9. RETRACTING CANDIDATE n1r1c3 FROM CONTEXT 5.

BACK IN CONTEXT 5 with 0 csp-variables solved and 632 candidates remaining.

naked-single ==> r1c3=3
naked-single ==> r3c3=1
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 5. RETRACTING CANDIDATE n2r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 631 candidates remaining.

naked-single ==> r7c6=1

GENERATING CONTEXT 10 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c2.
naked-single ==> r7c1=2

*** STARTING T&E IN CONTEXT 10 at depth 1 with 1 csp-variables solved and 610 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 10 AT DEPTH 1, with 1 csp-variables solved and 610 candidates remaining


GENERATING CONTEXT 11 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=2
NO CONTRADICTION FOUND IN CONTEXT 11.
BACK IN CONTEXT 10 with 1 csp-variables solved and 610 candidates remaining.


GENERATING CONTEXT 12 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n2r1c2.
naked-single ==> r4c2=1
naked-single ==> r6c1=3
naked-single ==> r5c3=2
naked-single ==> r6c6=2
naked-single ==> r2c6=3
naked-single ==> r1c4=1
naked-single ==> r1c3=3
naked-single ==> r3c3=1
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 12. RETRACTING CANDIDATE n2r1c2 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 1 csp-variables solved and 610 candidates remaining.

naked-single ==> r1c2=1
naked-single ==> r4c2=2

GENERATING CONTEXT 13 AT DEPTH 2, SON OF CONTEXT 10, FROM HYPOTHESIS n2r1c3.
naked-single ==> r3c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 13. RETRACTING CANDIDATE n2r1c3 FROM CONTEXT 10.

BACK IN CONTEXT 10 with 1 csp-variables solved and 610 candidates remaining.

naked-single ==> r1c3=3
naked-single ==> r5c3=1
naked-single ==> r6c1=3
naked-single ==> r6c6=2
naked-single ==> r5c4=3
naked-single ==> r4c5=1
naked-single ==> r2c6=3
naked-single ==> r3c5=2
NO POSSIBLE VALUE for csp-variable 114 IN CONTEXT 10. RETRACTING CANDIDATE n3r7c2 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 1 csp-variables solved and 609 candidates remaining.

naked-single ==> r7c2=2
naked-single ==> r7c1=3

GENERATING CONTEXT 14 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r6c6.
naked-single ==> r2c6=2

*** STARTING T&E IN CONTEXT 14 at depth 1 with 3 csp-variables solved and 570 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 14 AT DEPTH 1, with 3 csp-variables solved and 570 candidates remaining


GENERATING CONTEXT 15 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=3
naked-single ==> r2c3=3
naked-single ==> r1c3=2
NO POSSIBLE VALUE for csp-variable 133 IN CONTEXT 15. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 14.

BACK IN CONTEXT 14 with 3 csp-variables solved and 570 candidates remaining.

naked-single ==> r1c2=3
naked-single ==> r4c2=1
naked-single ==> r6c1=2
naked-single ==> r5c3=3
naked-single ==> r4c5=2
naked-single ==> r5c4=1
NO POSSIBLE VALUE for csp-variable 114 IN CONTEXT 14. RETRACTING CANDIDATE n3r6c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 3 csp-variables solved and 569 candidates remaining.

naked-single ==> r6c6=2
naked-single ==> r2c6=3
naked-single ==> r6c1=1
naked-single ==> r4c2=3
naked-single ==> r1c2=1
naked-single ==> r1c4=2
naked-single ==> r1c3=3
naked-single ==> r3c3=2

PUZZLE 0 HAS NO SOLUTION : NO CANDIDATE FOR RC-CELL r2c3
MOST COMPLEX RULE TRIED = NS
Puzzle .111.......1..1.....1.1.....1..1......11.....1....1...11...1..................... :
init-time = 0.0s, solve-time = 0.22s, total-time = 0.22s



If yes, because of the 7s in only 2 cells, it's a little more complicated to deai with in SudoRules.
You have to consider the following 4-digit pattern:
Code: Select all
 *---------------------------------------------------*
 | .        1234    1234   | 1234    .       .       |
 | .       .        1234   | .       .        1234   |
 | .       .        1234   | .       1234    .       |
 |-------------------------+-------------------------|
 | .        1234    .      | .       1234    .       |
 | .       .        1234   |  1234   .       .       |
 |  1234    .       .      | .       .       1234    |
 |-------------------------+-------------------------|
 | 1234     1234    .      | .       .       1234    |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

in which some candidates are missing. The standard way of doing this in SudoRules is making simulated eliminations at the start.
Code: Select all
(bind ?*simulated-eliminations* (create$
   412  414 426 433 435
    442 445 453 454 461 466
    471 472 476
))
(solve-k-digit-pattern-string 4
   ".111.......1..1.....1.1.....1..1......11.....1....1...11...1.....................")
(Beware that the pattern string must be properly competed with the missing stack on the right)


and this is indeed contradictory in T&E(2):
Hidden Text: Show
Code: Select all
(solve-k-digit-pattern-string 4
    ".111.......1..1.....1.1.....1..1......11.....1....1...11...1.....................")
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = T&E(BRT, 2)
***  Using CLIPS 6.32-r823
***  Running on MacBookPro 16'' M1Max 2021, 64GB LPDDR5, MacOS 12.5
***  Download from: https://github.com/denis-berthier/CSP-Rules-V2.1
***********************************************************************************************
.111.......1..1.....1.1.....1..1......11.....1....1...11...1.....................
Simulated elimination of 476
Simulated elimination of 472
Simulated elimination of 471
Simulated elimination of 466
Simulated elimination of 461
Simulated elimination of 454
Simulated elimination of 453
Simulated elimination of 445
Simulated elimination of 442
Simulated elimination of 435
Simulated elimination of 433
Simulated elimination of 426
Simulated elimination of 414
Simulated elimination of 412
Resolution state after Singles:
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123456789 123       1234      ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 1234      ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123       ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123456789 123       123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123       ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123       123456789 123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+
   ! 123       123       123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
   ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
   +-------------------------------+-------------------------------+-------------------------------+

635 candidates, 0 csp-links and 0 links. Density = 0.0%
Starting non trivial part of solution.

*** STARTING T&E IN CONTEXT 0 at depth 1 with 0 csp-variables solved and 635 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 0 with 0 csp-variables solved and 635 candidates remaining


GENERATING CONTEXT 1 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c6.

*** STARTING T&E IN CONTEXT 1 at depth 1 with 0 csp-variables solved and 635 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 1 AT DEPTH 1, with 0 csp-variables solved and 635 candidates remaining


GENERATING CONTEXT 2 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c2.
naked-single ==> r7c2=2
naked-single ==> r4c2=3
naked-single ==> r7c1=1
naked-single ==> r6c1=2
naked-single ==> r5c3=1
naked-single ==> r6c6=1
naked-single ==> r2c6=2
naked-single ==> r1c4=3
naked-single ==> r3c5=1
naked-single ==> r5c4=2
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 2. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 635 candidates remaining.


GENERATING CONTEXT 3 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n2r1c2.
naked-single ==> r7c2=1
naked-single ==> r4c2=3
naked-single ==> r7c1=2
naked-single ==> r6c1=1
naked-single ==> r5c3=2
naked-single ==> r6c6=2
naked-single ==> r2c6=1
naked-single ==> r1c4=3
naked-single ==> r3c5=2
naked-single ==> r5c4=1
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 3. RETRACTING CANDIDATE n2r1c2 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 635 candidates remaining.

naked-single ==> r1c2=3

GENERATING CONTEXT 4 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c3.
naked-single ==> r3c3=2
naked-single ==> r2c3=4
naked-single ==> r5c3=3
naked-single ==> r1c4=2
naked-single ==> r2c6=1
naked-single ==> r3c5=3
naked-single ==> r6c6=2
naked-single ==> r4c5=1
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 4. RETRACTING CANDIDATE n1r1c3 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 635 candidates remaining.


GENERATING CONTEXT 5 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n2r1c3.
naked-single ==> r3c3=1
naked-single ==> r2c3=4
naked-single ==> r5c3=3
naked-single ==> r1c4=1
naked-single ==> r2c6=2
naked-single ==> r3c5=3
naked-single ==> r6c6=1
naked-single ==> r4c5=2
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 5. RETRACTING CANDIDATE n2r1c3 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 635 candidates remaining.

naked-single ==> r1c3=4

GENERATING CONTEXT 6 AT DEPTH 2, SON OF CONTEXT 1, FROM HYPOTHESIS n1r1c4.
naked-single ==> r2c6=2
naked-single ==> r2c3=1
naked-single ==> r3c3=2
naked-single ==> r5c3=3
naked-single ==> r5c4=2
naked-single ==> r3c5=3
naked-single ==> r4c5=1
NO POSSIBLE VALUE for csp-variable 166 IN CONTEXT 6. RETRACTING CANDIDATE n1r1c4 FROM CONTEXT 1.

BACK IN CONTEXT 1 with 0 csp-variables solved and 635 candidates remaining.

naked-single ==> r1c4=2
naked-single ==> r2c6=1
naked-single ==> r6c6=2
naked-single ==> r3c5=3
naked-single ==> r4c5=1
naked-single ==> r5c4=3
naked-single ==> r4c2=2
naked-single ==> r7c2=1
naked-single ==> r7c1=2
naked-single ==> r5c3=1
naked-single ==> r6c1=3
naked-single ==> r3c3=2
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 1. RETRACTING CANDIDATE n3r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 634 candidates remaining.


GENERATING CONTEXT 7 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n2r7c6.

*** STARTING T&E IN CONTEXT 7 at depth 1 with 0 csp-variables solved and 634 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 7 AT DEPTH 1, with 0 csp-variables solved and 634 candidates remaining


GENERATING CONTEXT 8 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n1r1c2.
naked-single ==> r7c2=3
naked-single ==> r4c2=2
naked-single ==> r7c1=1
naked-single ==> r6c1=3
naked-single ==> r5c3=1
naked-single ==> r6c6=1
naked-single ==> r2c6=3
naked-single ==> r1c4=2
naked-single ==> r3c5=1
naked-single ==> r5c4=3
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 8. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 7.

BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.


GENERATING CONTEXT 9 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n2r1c2.
NO CONTRADICTION FOUND IN CONTEXT 9.
BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.


GENERATING CONTEXT 10 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n3r1c2.
naked-single ==> r7c2=1
naked-single ==> r4c2=2
naked-single ==> r7c1=3
naked-single ==> r6c1=1
naked-single ==> r5c3=3
naked-single ==> r6c6=3
naked-single ==> r2c6=1
naked-single ==> r1c4=2
naked-single ==> r3c5=3
naked-single ==> r5c4=1
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 10. RETRACTING CANDIDATE n3r1c2 FROM CONTEXT 7.

BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.

naked-single ==> r1c2=2

GENERATING CONTEXT 11 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n1r1c3.
naked-single ==> r3c3=3
naked-single ==> r2c3=4
naked-single ==> r5c3=2
naked-single ==> r1c4=3
naked-single ==> r2c6=1
naked-single ==> r3c5=2
naked-single ==> r6c6=3
naked-single ==> r4c5=1
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 11. RETRACTING CANDIDATE n1r1c3 FROM CONTEXT 7.

BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.


GENERATING CONTEXT 12 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n3r1c3.
naked-single ==> r3c3=1
naked-single ==> r2c3=4
naked-single ==> r5c3=2
naked-single ==> r1c4=1
naked-single ==> r2c6=3
naked-single ==> r3c5=2
naked-single ==> r6c6=1
naked-single ==> r4c5=3
NO POSSIBLE VALUE for csp-variable 154 IN CONTEXT 12. RETRACTING CANDIDATE n3r1c3 FROM CONTEXT 7.

BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.

naked-single ==> r1c3=4

GENERATING CONTEXT 13 AT DEPTH 2, SON OF CONTEXT 7, FROM HYPOTHESIS n1r1c4.
naked-single ==> r2c6=3
naked-single ==> r2c3=1
naked-single ==> r3c3=3
naked-single ==> r5c3=2
naked-single ==> r5c4=3
naked-single ==> r3c5=2
naked-single ==> r4c5=1
NO POSSIBLE VALUE for csp-variable 166 IN CONTEXT 13. RETRACTING CANDIDATE n1r1c4 FROM CONTEXT 7.

BACK IN CONTEXT 7 with 0 csp-variables solved and 634 candidates remaining.

naked-single ==> r1c4=3
naked-single ==> r2c6=1
naked-single ==> r6c6=3
naked-single ==> r3c5=2
naked-single ==> r4c5=1
naked-single ==> r5c4=2
naked-single ==> r4c2=3
naked-single ==> r7c2=1
naked-single ==> r7c1=3
naked-single ==> r5c3=1
naked-single ==> r6c1=2
naked-single ==> r3c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 7. RETRACTING CANDIDATE n2r7c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 0 csp-variables solved and 633 candidates remaining.

naked-single ==> r7c6=1

GENERATING CONTEXT 14 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r7c2.
naked-single ==> r7c1=2

*** STARTING T&E IN CONTEXT 14 at depth 1 with 1 csp-variables solved and 612 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 14 AT DEPTH 1, with 1 csp-variables solved and 612 candidates remaining


GENERATING CONTEXT 15 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=2
NO CONTRADICTION FOUND IN CONTEXT 15.
BACK IN CONTEXT 14 with 1 csp-variables solved and 612 candidates remaining.


GENERATING CONTEXT 16 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n2r1c2.
naked-single ==> r4c2=1
naked-single ==> r6c1=3
naked-single ==> r5c3=2
naked-single ==> r6c6=2
naked-single ==> r2c6=3
naked-single ==> r1c4=1
naked-single ==> r3c5=2
naked-single ==> r5c4=3
NO POSSIBLE VALUE for csp-variable 145 IN CONTEXT 16. RETRACTING CANDIDATE n2r1c2 FROM CONTEXT 14.

BACK IN CONTEXT 14 with 1 csp-variables solved and 612 candidates remaining.

naked-single ==> r1c2=1
naked-single ==> r4c2=2

GENERATING CONTEXT 17 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n2r1c3.
naked-single ==> r3c3=3
naked-single ==> r2c3=4
naked-single ==> r5c3=1
naked-single ==> r6c1=3
naked-single ==> r6c6=2
naked-single ==> r2c6=3
NO POSSIBLE VALUE for csp-variable 114 IN CONTEXT 17. RETRACTING CANDIDATE n2r1c3 FROM CONTEXT 14.

BACK IN CONTEXT 14 with 1 csp-variables solved and 612 candidates remaining.


GENERATING CONTEXT 18 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n3r1c3.
naked-single ==> r5c3=1
naked-single ==> r6c1=3
naked-single ==> r6c6=2
naked-single ==> r2c6=3
naked-single ==> r5c4=3
naked-single ==> r4c5=1
naked-single ==> r3c5=2
NO POSSIBLE VALUE for csp-variable 133 IN CONTEXT 18. RETRACTING CANDIDATE n3r1c3 FROM CONTEXT 14.

BACK IN CONTEXT 14 with 1 csp-variables solved and 612 candidates remaining.

naked-single ==> r1c3=4

GENERATING CONTEXT 19 AT DEPTH 2, SON OF CONTEXT 14, FROM HYPOTHESIS n2r1c4.
naked-single ==> r2c6=3
naked-single ==> r2c3=2
naked-single ==> r3c3=3
naked-single ==> r5c3=1
naked-single ==> r5c4=3
naked-single ==> r4c5=1
NO POSSIBLE VALUE for csp-variable 135 IN CONTEXT 19. RETRACTING CANDIDATE n2r1c4 FROM CONTEXT 14.

BACK IN CONTEXT 14 with 1 csp-variables solved and 612 candidates remaining.

naked-single ==> r1c4=3
naked-single ==> r2c6=2
naked-single ==> r6c6=3
naked-single ==> r6c1=1
naked-single ==> r5c3=3
NO POSSIBLE VALUE for csp-variable 123 IN CONTEXT 14. RETRACTING CANDIDATE n3r7c2 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 1 csp-variables solved and 611 candidates remaining.

naked-single ==> r7c2=2
naked-single ==> r7c1=3

GENERATING CONTEXT 20 AT DEPTH 1, SON OF CONTEXT 0, FROM HYPOTHESIS n3r6c6.
naked-single ==> r2c6=2

*** STARTING T&E IN CONTEXT 20 at depth 1 with 3 csp-variables solved and 572 candidates remaining ***

        STARTING PHASE 1 IN CONTEXT 20 AT DEPTH 1, with 3 csp-variables solved and 572 candidates remaining


GENERATING CONTEXT 21 AT DEPTH 2, SON OF CONTEXT 20, FROM HYPOTHESIS n1r1c2.
naked-single ==> r4c2=3
naked-single ==> r1c4=3
naked-single ==> r3c5=1
naked-single ==> r4c5=2
naked-single ==> r5c4=1
naked-single ==> r5c3=2
naked-single ==> r1c3=4
naked-single ==> r2c3=3
NO POSSIBLE VALUE for csp-variable 133 IN CONTEXT 21. RETRACTING CANDIDATE n1r1c2 FROM CONTEXT 20.

BACK IN CONTEXT 20 with 3 csp-variables solved and 572 candidates remaining.

naked-single ==> r1c2=3
naked-single ==> r4c2=1
naked-single ==> r6c1=2
naked-single ==> r5c3=3
naked-single ==> r4c5=2
naked-single ==> r5c4=1
NO POSSIBLE VALUE for csp-variable 114 IN CONTEXT 20. RETRACTING CANDIDATE n3r6c6 FROM CONTEXT 0.

BACK IN CONTEXT 0 with 3 csp-variables solved and 571 candidates remaining.

naked-single ==> r6c6=2
naked-single ==> r2c6=3
naked-single ==> r6c1=1
naked-single ==> r4c2=3
naked-single ==> r1c2=1
naked-single ==> r1c4=2
naked-single ==> r3c5=1

PUZZLE 0 HAS NO SOLUTION : NO CANDIDATE FOR RC-CELL r4c5
MOST COMPLEX RULE TRIED = NS
Puzzle .111.......1..1.....1.1.....1..1......11.....1....1...11...1..................... :
init-time = 0.0s, solve-time = 0.34s, total-time = 0.34s
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby marek stefanik » Mon Nov 28, 2022 9:13 am

denis_berthier wrote:Marek, good idea to use intermediary relations, though your cryptic notation is illegible to me.
I found it difficult to notate, I will explain what I think are the confusing parts in words.

* is a TH 8-loop => each of 249 can only appear once in #
3# – 3r12c3 = (38–5)r79c3 = 5r6c3 – 5# => 3# and 5# are mutually exclusive (note that so are the two 5s in #) and they force (3|5|8)r9c3
Code: Select all
.-------------------.-------------------.--------------------.
| 1     *249  23479 |*249    5    6     | 2379  8       479  |
|#23479  5    23479 | 1      8   #249   | 2379  234679  4679 |
| 8      6   *249   | 7     *249  3     | 129   5       149  |
:-------------------+-------------------+--------------------:
|b24579 *249  1     | 24589 *249  24589 | 6    a2479    3    |
| 6      3   *249   |*249    7    1     | 8     249     5    |
|#24579  8    24579 | 3      6   #2459  | 1279  2479    1479 |
:-------------------+-------------------+--------------------:
|d2349  d249 d23489 | 6      1   e2479  | 5     39–7    789  |
|d3459   7    6     | 4589   349  4589  | 39    1       2    |
|d2359   1   c23589 | 259    239  2579  | 4     3679    6789 |
'-------------------'-------------------'--------------------'
7r4c8 = 7r4c1 – 7# = [(3|5)&249#, (3|5|8)r9c3, 249b7# \ r7c16] – (249=7)r7c6 => (7# = 7r7c6) & –7r7c8
Based on the first two observations, either there is a 7 in # or there is one of {3,5} with 249.
Said (3|5) then forces (3|5|8)r9c3, restricting 29b7, thus creating the ERs (with TH relation) 249b7# \ r7c16, eliminating 249r7c6.
The rest is a regular AIC, the end result (edited for clarity) is a derived strong link and an elimination.

denis_berthier wrote:Here, I have some doubt: did you [totuan] intend the 7s to be in the pattern?
Yes, I am confident that totuan did intend the 7 to be in the pattern (look at b1).

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: #44951 in 63137 T&E(3) min-expands

Postby totuan » Mon Nov 28, 2022 11:34 am

denis_berthier wrote:
totuan wrote:E1 impossible pattern (249)
Code: Select all
 *---------------------------------------------------*
 | .       249     2479    | 249     .       .       |
 | .       .       2479    | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | 249     249     .       | .       .       249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

Here, I have some doubt: did you intend the 7s to be in the pattern? I think no

Yes.
The 7’s are not in impossible pattern, I keep them to see form of triple (249) on B1. Without 7’s then have two impossible pattern – like twin, E1.1 and E1.2 as below. Note that - on my first post, r7c1 is not neccessory in E1. The proving them is the same.
Code: Select all
 *---------------------------------------------------*   E1.1 impossible pattern
 | .       249     .       | 249     .       .       |
 | .       .       249     | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | X       249     .       | .       .      A249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

 *---------------------------------------------------*  E1.2 impossible pattern
 | .       249     249     | 249     .       .       |
 | .       .       .       | .       .       249     |
 | .       .       249     | .       249     .       |
 |-------------------------+-------------------------|
 | .       249     .       | .       249     .       |
 | .       .       249     | 249     .       .       |
 | 249     .       .       | .       .       249     |
 |-------------------------+-------------------------|
 | X       249     .       | .       .      A249     |
 | .       .       .       | .       .       .       |
 | .       .       .       | .       .       .       |
 *---------------------------------------------------*

Again, thanks for your puzzle!
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #44951 in 63137 T&E(3) min-expands

Postby denis_berthier » Mon Nov 28, 2022 12:52 pm

.
Actually, as shown in my previous post, the pattern with the 2 7s can be proven impossible in restricted T&E(2). Of course, any sub-pattern (in particular with 0, 1 or 2 7s) can also be proven impossible in restricted T&E(2).
denis_berthier
2010 Supporter
 
Posts: 4237
Joined: 19 June 2007
Location: Paris

Re: #44951 in 63137 T&E(3) min-expands

Postby eleven » Mon Nov 28, 2022 1:25 pm

marek stefanik wrote:* is a TH 8-loop => each of 249 can only appear once in #

You should mention, that therefore each of 249 is once in the #-rectangle (cause they must form a remote triple, if one of these cells gets another digit).
This is needed to understand the last step:
In case 3r2c1 | 5r6c16, which implies r9c3<>29: xr7c123 = r89c1 - r26c1 == xr26c6 => -xr7c6 (x being one of 249)
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: #44951 in 63137 T&E(3) min-expands

Postby marek stefanik » Tue Nov 29, 2022 1:20 am

eleven wrote:You should mention, that therefore each of 249 is once in the #-rectangle (cause they must form a remote triple, if one of these cells gets another digit).
This is needed to understand the last step:
In case 3r2c1 | 5r6c16, which implies r9c3<>29: xr7c123 = r89c1 - r26c1 == xr26c6 => -xr7c6 (x being one of 249)
I think I mentioned both of those – the former in the strong link 7# = (3|5)&249# and the latter as ERs.
Outside the strong link I cannot mention that each of 249 appears in #, because there could be more than one guardian.
If the right side of the link looks confusing, how can I make it clearer?

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: #44951 in 63137 T&E(3) min-expands

Postby eleven » Tue Nov 29, 2022 12:02 pm

You are of course right, that a remote triple is only forced, if there is a single extra candidate true in the rectangle, and no other in the TH pattern.
And yes, you notated it, but without mentioning the remote triple only insiders would know, why the link is valid.
I still don't really understand the notation "249b7# \ r7c16", though i could see, how the elimination results (why r7c16 ?).
I don't want to criticize your notation, personally i like to find out myself, what the logic behind is. But it needs some practice not to find it cryptic.
eleven
 
Posts: 3173
Joined: 10 February 2008

Next

Return to Puzzles