.
Note that there may be different ways of using some of the 630-38 impossible patterns. Which ones are found first depends on the priorities they're given.
Reminder: in SudoRules, priorities for these patterns are for those with fewer cells.
Starting as usual from the resolution state after Singles and whips[1], a whole lot of patterns are found. I keep here only the 3 useful ones. Note that the OR3 Tridagon relation is immediately split into two OR2 relations:
- Code: Select all
hidden-pairs-in-a-row: r6{n6 n7}{c1 c3} ==> r6c3≠9, r6c3≠8, r6c3≠2, r6c1≠9, r6c1≠8, r6c1≠2
+-------------------+-------------------+-------------------+
! 1 24589 3 ! 479 459 6 ! 2789 289 2589 !
! 24679 2459 2679 ! 1 8 3459 ! 279 239 2569 !
! 6789 589 6789 ! 79 2 359 ! 4 1389 15689 !
+-------------------+-------------------+-------------------+
! 289 1 4 ! 5 7 289 ! 289 6 3 !
! 5 3 289 ! 24689 469 2489 ! 1289 1289 7 !
! 67 289 67 ! 3 1 289 ! 5 4 289 !
+-------------------+-------------------+-------------------+
! 23489 6 289 ! 2489 349 7 ! 1289 5 1289 !
! 289 7 1 ! 2689 569 2589 ! 3 289 4 !
! 23489 2489 5 ! 2489 349 1 ! 6 7 289 !
+-------------------+-------------------+-------------------+
OR3-anti-tridagon[12] for digits 2, 8 and 9 in blocks:
b4, with cells: r4c1, r5c3, r6c2
b6, with cells: r4c7, r5c8, r6c9
b7, with cells: r8c1, r7c3, r9c2
b9, with cells: r8c8, r7c7, r9c9
with 3 guardians: n1r5c8 n1r7c7 n4r9c2
Trid-OR3-relation between candidates n1r5c8, n1r7c7 and n4r9c2
+ same valence for candidates n1r7c7 and n1r5c8 via c-chain[2]: n1r7c7,n1r5c7,n1r5c8
==> Trid-OR3-relation can be split into two Trid-OR2-relations with respective lists of guardians:
n1r5c8 n4r9c2 and n1r7c7 n4r9c2 .
EL10c28-OR2-relation for digits: 2, 8 and 9
in cells (marked #): (r4c6 r4c1 r6c9 r6c6 r6c2 r9c9 r7c9 r8c8 r8c6 r8c1)
with 2 guardians (in cells marked @) : n1r7c9 n5r8c6
+----------------------+----------------------+----------------------+
! 1 24589 3 ! 479 459 6 ! 2789 289 2589 !
! 24679 2459 2679 ! 1 8 3459 ! 279 239 2569 !
! 6789 589 6789 ! 79 2 359 ! 4 1389 15689 !
+----------------------+----------------------+----------------------+
! 289# 1 4 ! 5 7 289# ! 289 6 3 !
! 5 3 289 ! 24689 469 2489 ! 1289 1289 7 !
! 67 289# 67 ! 3 1 289# ! 5 4 289# !
+----------------------+----------------------+----------------------+
! 23489 6 289 ! 2489 349 7 ! 1289 5 1289#@ !
! 289# 7 1 ! 2689 569 2589#@ ! 3 289# 4 !
! 23489 2489 5 ! 2489 349 1 ! 6 7 289# !
+----------------------+----------------------+----------------------+
EL15c97-OR6-relation for digits: 2, 8 and 9
in cells (marked #): (r7c3 r7c7 r9c4 r9c9 r8c6 r8c1 r8c8 r4c1 r4c7 r5c4 r5c3 r5c8 r6c6 r6c2 r6c9)
with 6 guardians (in cells marked @) : n1r7c7 n4r9c4 n5r8c6 n4r5c4 n6r5c4 n1r5c8
+-------------------------+-------------------------+-------------------------+
! 1 24589 3 ! 479 459 6 ! 2789 289 2589 !
! 24679 2459 2679 ! 1 8 3459 ! 279 239 2569 !
! 6789 589 6789 ! 79 2 359 ! 4 1389 15689 !
+-------------------------+-------------------------+-------------------------+
! 289# 1 4 ! 5 7 289 ! 289# 6 3 !
! 5 3 289# ! 24689#@ 469 2489 ! 1289 1289#@ 7 !
! 67 289# 67 ! 3 1 289# ! 5 4 289# !
+-------------------------+-------------------------+-------------------------+
! 23489 6 289# ! 2489 349 7 ! 1289#@ 5 1289 !
! 289# 7 1 ! 2689 569 2589#@ ! 3 289# 4 !
! 23489 2489 5 ! 2489#@ 349 1 ! 6 7 289# !
+-------------------------+-------------------------+-------------------------+
EL10c28-OR2-whip[3]: OR2{{n5r8c6 | n1r7c9}} - r3n1{c9 c8} - r3n3{c8 .} ==> r3c6≠5
EL10c28-OR2-whip[4]: OR2{{n1r7c9 | n5r8c6}} - c5n5{r8 r1} - c9n5{r1 r2} - c9n6{r2 .} ==> r3c9≠1singles ==> r3c8=1, r2c8=3, r3c6=3, r5c7=1, r7c9=1
- Code: Select all
+-------------------+-------------------+-------------------+
! 1 24589 3 ! 479 459 6 ! 2789 289 2589 !
! 24679 2459 2679 ! 1 8 459 ! 279 3 2569 !
! 6789 589 6789 ! 79 2 3 ! 4 1 5689 !
+-------------------+-------------------+-------------------+
! 289 1 4 ! 5 7 289 ! 289 6 3 !
! 5 3 289 ! 24689 469 2489 ! 1 289 7 !
! 67 289 67 ! 3 1 289 ! 5 4 289 !
+-------------------+-------------------+-------------------+
! 23489 6 289 ! 2489 349 7 ! 289 5 1 !
! 289 7 1 ! 2689 569 2589 ! 3 289 4 !
! 23489 2489 5 ! 2489 349 1 ! 6 7 289 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous Trid-OR2-relation between candidates n1r7c7 n4r9c2 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n4r9c2
Trid-ORk-relation with only one candidate => r9c2=4singles ==> r2c1=4, r5c6=4
- Code: Select all
+----------------+----------------+----------------+
! 1 2589 3 ! 479 459 6 ! 2789 289 2589 !
! 4 259 2679 ! 1 8 59 ! 279 3 2569 !
! 6789 589 6789 ! 79 2 3 ! 4 1 5689 !
+----------------+----------------+----------------+
! 289 1 4 ! 5 7 289 ! 289 6 3 !
! 5 3 289 ! 2689 69 4 ! 1 289 7 !
! 67 289 67 ! 3 1 289 ! 5 4 289 !
+----------------+----------------+----------------+
! 2389 6 289 ! 2489 349 7 ! 289 5 1 !
! 289 7 1 ! 2689 569 2589 ! 3 289 4 !
! 2389 4 5 ! 289 39 1 ! 6 7 289 !
+----------------+----------------+----------------+
At least one candidate of a previous EL15c97-OR6-relation between candidates n1r7c7 n4r9c4 n5r8c6 n4r5c4 n6r5c4 n1r5c8 has just been eliminated.
There remains an EL15c97-OR2-relation between candidates: n5r8c6 n6r5c4
hidden-pairs-in-a-column: c1{n6 n7}{r3 r6} ==> r3c1≠9, r3c1≠8
EL15c97-OR2-whip[2]: OR2{{n6r5c4 | n5r8c6}} - c6n8{r8 .} ==> r5c4≠8whip[1]: c4n8{r9 .} ==> r8c6≠8
EL15c97-OR2-whip[2]: OR2{{n6r5c4 | n5r8c6}} - c6n2{r8 .} ==> r5c4≠2whip[1]: c4n2{r9 .} ==> r8c6≠2
naked-pairs-in-a-column: c6{r2 r8}{n5 n9} ==> r6c6≠9, r4c6≠9
whip[1]: b5n9{r5c5 .} ==> r5c3≠9, r5c8≠9
finned-x-wing-in-columns: n9{c8 c6}{r8 r1} ==> r1c5≠9, r1c4≠9
finned-x-wing-in-rows: n9{r6 r1}{c2 c9} ==> r3c9≠9, r2c9≠9
finned-x-wing-in-columns: n9{c6 c8}{r8 r2} ==> r2c7≠9
whip[1]: b3n9{r1c9 .} ==> r1c2≠9
t-whip[2]: r4n9{c7 c1} - b7n9{r9c1 .} ==> r7c7≠9
EL15c97-OR2-whip[2]: OR2{{n5r8c6 | n6r5c4}} - r8n6{c4 .} ==> r8c5≠5stte