#42693, many tridagon eliminations again

Post puzzles for others to solve here.

#42693, many tridagon eliminations again

Postby denis_berthier » Mon Sep 05, 2022 4:49 am

.
This is #42693 in mith's list of 63137 min-expand puzzles in T&E(3).
Selected for its high number of direct anti-tridagon eliminations.
(For more seasoned tridagon players.)

Code: Select all
+-------+-------+-------+
! 1 . . ! 4 . 6 ! 7 8 . !
! 4 . . ! 1 . . ! . 6 3 !
! 6 . . ! . . 3 ! 4 . 1 !
+-------+-------+-------+
! . . . ! 8 . 7 ! . 3 . !
! . . . ! . . 4 ! . . . !
! . . 8 ! 6 3 . ! 1 7 . !
+-------+-------+-------+
! . 9 4 ! 7 6 . ! . . . !
! 7 . 2 ! . 4 . ! . . . !
! 8 6 1 ! . . . ! . 4 7 !
+-------+-------+-------+
1..4.678.4..1...636....34.1...8.7.3......4.....863.17..9476....7.2.4....861....47;8928;212137
SER = 10.4


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1     235   359   ! 4     259   6     ! 7     8     259   !
   ! 4     2578  579   ! 1     25789 259   ! 259   6     3     !
   ! 6     2578  579   ! 259   25789 3     ! 4     259   1     !
   +-------------------+-------------------+-------------------+
   ! 259   145   56    ! 8     1259  7     ! 2569  3     24569 !
   ! 2359  1357  3567  ! 259   1259  4     ! 25689 259   25689 !
   ! 259   45    8     ! 6     3     259   ! 1     7     2459  !
   +-------------------+-------------------+-------------------+
   ! 35    9     4     ! 7     6     1258  ! 2358  125   258   !
   ! 7     35    2     ! 359   4     1589  ! 35689 159   5689  !
   ! 8     6     1     ! 2359  259   259   ! 2359  4     7     !
   +-------------------+-------------------+-------------------+
164 candidates.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #42693, many tridagon eliminations again

Postby Leren » Mon Sep 05, 2022 5:44 am

Code: Select all
*------------------------------------------*
| 1  25  3  | 4  *259 6   | 7     8  *259  |
| 4  258 79 | 1   78 *29  |*259   6   3    |
| 6  258 79 |*259 78  3   | 4    *259 1    |
|-----------+-------------+----------------|
| 29 1   5  | 8  *29  7   |#6-259 3   4    |
| 3  7   6  |*259 1   4   | 2589 *259 2589 |
| 29 4   8  | 6   3  *259 | 1     7  *259  |
|-----------+-------------+----------------|
| 5  9   4  | 7   6   18  | 3     12  28   |
| 7  3   2  | 59  4   18  | 589   159 6    |
| 8  6   1  | 3   259 259 | 59    4   7    |
*------------------------------------------*

Resolution state after the Single Guardian Trigadon 259b2356 and basics. Solves with a few simple chains thereafter.

Hodoku, which does not do Trigadons, had a score of 27,592 for this puzzle. With the 6 added as a clue in r4c7, the score dropped to 1384.

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: #42693, many tridagon eliminations again

Postby P.O. » Mon Sep 05, 2022 7:59 am

just a remark, from a template point of view, this type of puzzle, the "tridagon profile" requires most of the time at most a combination of 4 templates to be solved, evaluating their difficulty with SER does not seem to make much sense, the SER >= 10.0 which don't have that profile don't give in so easily, i wonder if the tridagon rule should be integrated into the SER hierarchy at what level it would be.
Code: Select all
1....6.8.......2..6...72.14275......369......841.67....8..2167..1...8.4.....4.1.8  ;4357;362565  SER = 10.2  4-templates #VT:(4 6 138 8 116 4 10 6 116)
1.345..8945........983....5.....39.8.39...17...4....2...18......4593.8......15...  ;3557;85092   SER = 11.0  4-templates #VT:(7 99 8 4 4 380 117 6 4)
.23.5.7.9.5.....327.923....23...4.75.4.....9.9.....3.4....45..7.92.67....7412....  ;9598;223333  SER = 10.4  3-templates #VT:(111 2 4 4 8 131 4 262 3)
1.3.56.....7..9.........5....4...6.8..6.48.95......42..4.89..62.....59.4.6..2485.  ;811;24505    SER = 11.7  3-templates #VT:(72 17 84 4 5 4 68 14 10)
...45........8.1.379.231....6739..18.........91..6..3.3.....8.7.7...836.68...3.91  ;4815 73447   SER = 11.0  4-templates #VT:(6 114 2 84 90 10 10 4 6)
1..4.678.4..1...636....34.1...8.7.3......4.....863.17..9476....7.2.4....861....47  ;8928;212137  SER = 10.4  4-templates #VT:(4 64 5 2 184 4 4 8 75)
P.O.
 
Posts: 1762
Joined: 07 June 2021

Re: #42693, many tridagon eliminations again

Postby Leren » Mon Sep 05, 2022 8:29 am

Another remark. It seems to me that a trigadon can't go away just because one or more of the 3 digits has been removed in the trigadon cells. A corollary seems to be that you could have one with some of the trigadon cells being clues.

Is that right ? Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: #42693, many tridagon eliminations again

Postby denis_berthier » Mon Sep 05, 2022 10:36 am

.
I don't have much time now, so just a quick answer.

Templates have never been considered as a pattern-based approach, because combining them is mainly a heavy computational burden.

By the very definition of its levels, SER is unable of making a difference between T&E(1), T&E(2) or T&E(3). SER is (relatively) useful as it is and I can't see any point in adding any exotic pattern to it. One of its main problem is the discrepancies introduced by its uniqueness rules.

Adding a single clue (e.g. a backdoor) - or deleting a single candidate - can have a drastic effect on a puzzle. Nothing new here.

Leren, your question about deleting some of the tridagon candidates remains open as of today. I had planned to analyse it in my tridagon thread, but I have been busy with other things.
Notice however that:
- all the min-expand puzzles in mith's 63,137 collection have (at least) one anti-tridagon pattern with all 3 candidates in all 2 cells;
- allowing missing candidates (together with more than a single guardian) is likely to drastically increase the computational complexity.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #42693, many tridagon eliminations again

Postby DEFISE » Mon Sep 05, 2022 11:05 am

After basics :

Code: Select all
|-----------------------------------------------------------|
| 1     235   359   | 4     259   6     | 7     8     259   |
| 4     2578  579   | 1     78    259   | 259   6     3     |
| 6     2578  579   | 259   78    3     | 4     259   1     |
|-----------------------------------------------------------|
| 259   145   56    | 8     1259  7     | 2569  3     24569 |
| 2359  1357  3567  | 259   1259  4     | 25689 259   25689 |
| 259   45    8     | 6     3     259   | 1     7     2459  |
|-----------------------------------------------------------|
| 35    9     4     | 7     6     18    | 2358  125   258   |
| 7     35    2     | 359   4     18    | 35689 159   5689  |
| 8     6     1     | 2359  259   259   | 359   4     7     |
|-----------------------------------------------------------|


Tridagon (2,5,9) in B2p267, B3p348, B5p249, B6p159
3 gardians : 1r4c5, 6r4c7, 4r6c9

I consider this chain from 3r7c1 (= right elements of a partial g-braid[5] from 3r7c1):
3r7c1 -> 5r456c1 -> 6r4c3* -> 4r6c2* -> 1r4c2*
Each of the 3 gardians is seen by a candidate tagged with *. So 3r7c1 is false.

Then the puzzle is solvable in W6 but with a lot steps.
Here is a much shorter solution in W10:

Single(s): 5r7c1, 3r8c2, 3r1c3, 3r5c1, 3r7c7, 3r9c4
whip[6]: r1n9{c9 c5}- r5n9{c5 c4}- r8c4{n9 n5}- r9c5{n5 n2}- b5n2{r4c5 r6c6}- r6c1{n2 .} => -9r6c9
whip[9]: r6c2{n5 n4}- r6c9{n4 n2}- c7n2{r4 r2}- r2c6{n2 n9}- r1n9{c5 c9}- r3c8{n9 n5}- r3c4{n5 n2}- r5c4{n2 n9}- r5c8{n9 .} => -5r6c6

Naked pairs: 29r6c16 => -2r6c9
whip[10]: r6n5{c9 c2}- c2n4{r6 r4}- r4n1{c2 c5}- r4n5{c5 c7}- r9c7{n5 n9}- b3n9{r2c7 r3c8}- r5c8{n9 n2}- b5n2{r5c4 r6c6}-
c6n9{r6 r2}- r1n9{c5 .} => -5r1c9
whip[9]: r1c2{n5 n2}- r1c9{n2 n9}- r1c5{n9 n5}- c6n5{r2 r9}- r8c4{n5 n9}- c8n9{r8 r5}- c5n9{r5 r4}- r4n1{c5 c2}- c2n4{r4 .} => -5r6c2

Single(s): 4r6c2, 5r6c9, 4r4c9
whip[3]: r1c9{n9 n2}- r7n2{c9 c8}- r5c8{n2 .} => -9r3c8
whip[6]: c4n2{r3 r5}- c4n5{r5 r8}- c8n5{r8 r3}- c8n2{r3 r7}- c9n2{r7 r1}- r1n9{c9 .} => -9r3c4

Single(s): 9r3c3
Naked pairs: 25r3c48 => -2r3c2 -5r3c2
Xwing in columns: 9c48r58 => -9r5c5 -9r5c7 -9r5c9 -9r8c7 -9r8c9
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #42693, many tridagon eliminations again

Postby Cenoman » Mon Sep 05, 2022 1:03 pm

After lcls (34 solved cells, 153 candidates)
Code: Select all
 +-----------------------+----------------------+------------------------+
 |  1      235    359    |  4      259*   6     |  7       8     259*    |
 |  4      2578   579    |  1      78     259*  |  259*    6     3       |
 |  6      2578   579    |  259*   78     3     |  4       259*  1       |
 +-----------------------+----------------------+------------------------+
 |  29-5  b145   B56     |  8     a1259*  7     | A2569*   3     24569   |
 |  239-5  137-5  367-5  |  259*   1259   4     |  25689   259*  25689   |
 |  29-5 zb45     8      |  6      3      259*  |  1       7    y2459*   |
 +-----------------------+----------------------+------------------------+
 |  35     9      4      |  7      6      18    |  2358    125   258     |
 |  7      35     2      |  359    4      18    |  35689   159   5689    |
 |  8      6      1      |  2359   259    259   |  359     4     7       |
 +-----------------------+----------------------+------------------------+

1. TH (259)b2356 (*) having three guardians: 2r4c5, 6r4c7, 4r6c9
(1)r4c5 - (1=45)r46c2
(6)r4c7 - (6=5)r4c3
(4)r6c9 - (4=5)r6c2
=> -5 b4p14567; lcls, 6 placements (25 eliminations, 122 candidates)
(Maybe could it be called TH-Death Blossom ?? :lol: )

Code: Select all
 +--------------------+---------------------+------------------------+
 |  1    25     3     |  4     259    6     |  7       8     259     |
 |  4    2578*  579   |  1     78*    259   |  259     6     3       |
 |  6    2578*  579   |  259   78*    3     |  4       259   1       |
 +--------------------+---------------------+------------------------+
 |  29   145    56    |  8     1259   7     |  2569    3     24569   |
 |  3    1+7    67    |  259   1259   4     |  25689   259   25689   |
 |  29   45     8     |  6     3      259   |  1       7     2459    |
 +--------------------+---------------------+------------------------+
 |  5    9      4     |  7     6      18    |  3       12    28      |
 |  7    3      2     |  59    4      18    |  5689    159   5689    |
 |  8    6      1     |  3     259    259   |  59      4     7       |
 +--------------------+---------------------+------------------------+

SE rating ~ 8.9 I agree with François
Then the puzzle is solvable [...] with a lot steps.

That's true with chain techniques. Here, uniqueness helps:
2. UR (78)r23c25 using single external => +7 r5c2, lcls, 9 placements

Code: Select all
 +------------------+--------------------+----------------------+
 |  1    25    3    |  4    X25-9  6     |  7      8    z59(2)  |
 |  4    258   79   |  1     78  Ww59(2) |  59+2   6     3      |
 |  6    258   79   | a25-9* 78    3     |  4     a259*  1      |
 +------------------+--------------------+----------------------+
 |  29   1     5    |  8     29    7     |  6      3     4      |
 |  3    7     6    | a259*  1     4     | e589-2 a259*  2589   |
 |  29   4     8    |  6     3    x259   |  1      7    y259    |
 +------------------+--------------------+----------------------+
 |  5    9     4    |  7     6     18    |  3     b12   c28     |
 |  7    3     2    | Z59    4     18    | d589    159   6      |
 |  8    6     1    |  3    Y259   259   |  59     4     7      |
 +------------------+--------------------+----------------------+

3. [XW(2)r5c4 = r3c4 - r3c8*=*r5c8] = r7c8 - (2=8)r7c9 - r8c7 = (8)r5c7 => -2 r5c7; 1 placement (+2 r2c7)

End with two W-Wings:
4. (9=5)r2c6 - r6c6 = r6c9 - (5=9)r1c9 => -9 r1c5
5. (9=5)r2c6 - r1c5 = r9c5 - (5=9)r8c4 => -9 r3c4, -9 r9c6; ste
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: #42693, many tridagon eliminations again

Postby denis_berthier » Tue Sep 06, 2022 3:59 am

.
A solution in SFin+W5+OR3FW7, starting from the resolution state after whips[1], with 7 direct OR3-FW eliminations.

Code: Select all
hidden-pairs-in-a-column: c6{n1 n8}{r7 r8} ==> r8c6≠9, r8c6≠5, r7c6≠5, r7c6≠2
whip[1]: r7n2{c9 .} ==> r9c7≠2
hidden-pairs-in-a-column: c5{n7 n8}{r2 r3} ==> r3c5≠9, r3c5≠5, r3c5≠2, r2c5≠9, r2c5≠5, r2c5≠2
biv-chain[3]: r4c3{n6 n5} - r6c2{n5 n4} - b6n4{r6c9 r4c9} ==> r4c9≠6
   +-------------------+-------------------+-------------------+
   ! 1     235   359   ! 4     259   6     ! 7     8     259   !
   ! 4     2578  579   ! 1     78    259   ! 259   6     3     !
   ! 6     2578  579   ! 259   78    3     ! 4     259   1     !
   +-------------------+-------------------+-------------------+
   ! 259   145   56    ! 8     1259  7     ! 2569  3     2459  !
   ! 2359  1357  3567  ! 259   1259  4     ! 25689 259   25689 !
   ! 259   45    8     ! 6     3     259   ! 1     7     2459  !
   +-------------------+-------------------+-------------------+
   ! 35    9     4     ! 7     6     18    ! 2358  125   258   !
   ! 7     35    2     ! 359   4     18    ! 35689 159   5689  !
   ! 8     6     1     ! 2359  259   259   ! 359   4     7     !
   +-------------------+-------------------+-------------------+


The Tridagon part, with 7 direct OR3-FW eliminations:
Code: Select all
OR3-anti-tridagon[12] (type diag) for digits 2, 9 and 5 in blocks:
        b2, with cells: r1c5, r2c6, r3c4
        b3, with cells: r1c9, r2c7, r3c8
        b5, with cells: r4c5, r6c6, r5c4
        b6, with cells: r4c7, r6c9, r5c8
with 3 guardians: n1r4c5 n6r4c7 n4r6c9

OR3-forcing-whip-elim[4] based on OR3-anti-tridagon[12] for n1r4c5, n4r6c9 and  n6r4c7:
   || n1r4c5 - partial-whip[1]: r5n1{c5 c2} -
   || n4r6c9 - partial-whip[1]: r6c2{n4 n5} -
   || n6r4c7 - partial-whip[1]: r4c3{n6 n5} -
 ==> r5c2≠5

OR3-forcing-whip-elim[4] based on OR3-anti-tridagon[12] for n1r4c5, n6r4c7 and  n4r6c9:
   || n1r4c5 -
   || n6r4c7 - partial-whip[1]: r4c3{n6 n5} -
   || n4r6c9 - partial-whip[2]: r4n4{c9 c2} - r4n1{c2 c5} -
 ==> r4c5≠5

OR3-forcing-whip-elim[5] based on OR3-anti-tridagon[12] for n4r6c9, n6r4c7 and  n1r4c5:
   || n4r6c9 - partial-whip[1]: r6c2{n4 n5} -
   || n6r4c7 - partial-whip[1]: r4c3{n6 n5} -
   || n1r4c5 - partial-whip[2]: r5n1{c5 c2} - r5n7{c2 c3} -
 ==> r5c3≠5

OR3-forcing-whip-elim[6] based on OR3-anti-tridagon[12] for n4r6c9, n6r4c7 and  n1r4c5:
   || n4r6c9 - partial-whip[1]: r6c2{n4 n5} -
   || n6r4c7 - partial-whip[1]: r4c3{n6 n5} -
   || n1r4c5 - partial-whip[3]: r5n1{c5 c2} - r5n7{c2 c3} - r5n3{c3 c1} -
 ==> r5c1≠5

OR3-forcing-whip-elim[6] based on OR3-anti-tridagon[12] for n1r4c5, n4r6c9 and  n6r4c7:
   || n1r4c5 - partial-whip[1]: r5n1{c5 c2} -
   || n4r6c9 - partial-whip[2]: r6c2{n4 n5} - r8c2{n5 n3} -
   || n6r4c7 - partial-whip[2]: r5n6{c9 c3} - r5n7{c3 c2} -
 ==> r5c2≠3

OR3-forcing-whip-elim[7] based on OR3-anti-tridagon[12] for n4r6c9, n6r4c7 and  n1r4c5:
   || n4r6c9 - partial-whip[1]: r6c2{n4 n5} -
   || n6r4c7 - partial-whip[1]: r4c3{n6 n5} -
   || n1r4c5 - partial-whip[4]: r5n1{c5 c2} - r5n7{c2 c3} - r5n3{c3 c1} - r7c1{n3 n5} -
 ==> r6c1≠5

OR3-forcing-whip-elim[7] based on OR3-anti-tridagon[12] for n6r4c7, n1r4c5 and  n4r6c9:
   || n6r4c7 - partial-whip[1]: r5n6{c9 c3} -
   || n1r4c5 - partial-whip[2]: r5n1{c5 c2} - r5n7{c2 c3} -
   || n4r6c9 - partial-whip[3]: r6c2{n4 n5} - c1n5{r4 r7} - c1n3{r7 r5} -
 ==> r5c3≠3


The end is easy for this kind of puzzle.
Code: Select all
singles ==> r5c1=3, r7c1=5, r8c2=3, r1c3=3, r9c4=3, r7c7=3
z-chain[4]: c4n2{r5 r3} - c8n2{r3 r7} - r7c9{n2 n8} - r5n8{c9 .} ==> r5c7≠2
t-whip[4]: r1c2{n2 n5} - c3n5{r3 r4} - r4n6{c3 c7} - c7n2{r4 .} ==> r2c2≠2, r1c9≠2
whip[5]: r1n9{c9 c5} - r9n9{c5 c6} - b5n9{r6c6 r5c4} - c4n2{r5 r3} - b3n2{r3c8 .} ==> r2c7≠9
whip[5]: r2c7{n2 n5} - r1c9{n5 n9} - b2n9{r1c5 r3c4} - r8c4{n9 n5} - b9n5{r8c7 .} ==> r2c6≠2
hidden-single-in-a-row ==> r2c7=2
biv-chain[3]: b3n5{r3c8 r1c9} - r1c2{n5 n2} - b2n2{r1c5 r3c4} ==> r3c4≠5
t-whip[2]: c4n5{r5 r8} - r9n5{c6 .} ==> r5c7≠5
z-chain[3]: b3n5{r3c8 r1c9} - b2n5{r1c5 r2c6} - b5n5{r6c6 .} ==> r5c8≠5
biv-chain[3]: b3n9{r1c9 r3c8} - c8n5{r3 r8} - r8c4{n5 n9} ==> r8c9≠9
z-chain[3]: b3n5{r3c8 r1c9} - r6n5{c9 c6} - r2n5{c6 .} ==> r3c2≠5
z-chain[4]: r1n9{c9 c5} - c6n9{r2 r9} - c6n2{r9 r6} - r6c1{n2 .} ==> r6c9≠9
z-chain[4]: r5c8{n9 n2} - r7n2{c8 c9} - c9n8{r7 r8} - c9n6{r8 .} ==> r5c9≠9
z-chain[4]: r5c8{n9 n2} - r5c4{n2 n5} - r8c4{n5 n9} - b9n9{r8c8 .} ==> r5c7≠9
z-chain[4]: c8n5{r3 r8} - r8c4{n5 n9} - r5n9{c4 c5} - r1n9{c5 .} ==> r3c8≠9
singles ==> r3c8=5, r1c9=9
biv-chain[3]: b2n5{r1c5 r2c6} - b2n9{r2c6 r3c4} - r8c4{n9 n5} ==> r9c5≠5
biv-chain[3]: r9c5{n9 n2} - b2n2{r1c5 r3c4} - b2n9{r3c4 r2c6} ==> r9c6≠9
biv-chain[2]: b8n9{r9c5 r8c4} - c8n9{r8 r5} ==> r5c5≠9
biv-chain[4]: b4n2{r4c1 r6c1} - r6n9{c1 c6} - b2n9{r2c6 r3c4} - b2n2{r3c4 r1c5} ==> r4c5≠2
z-chain[4]: r8c4{n9 n5} - r9c6{n5 n2} - b5n2{r6c6 r5c5} - r5c8{n2 .} ==> r5c4≠9
singles ==> r5c8=9, r8c8=1, r7c8=2, r7c9=8, r7c6=1, r8c6=8, r5c7=8
naked-pairs-in-a-row: r4{c3 c7}{n5 n6} ==> r4c9≠5, r4c2≠5
biv-chain[3]: r5c4{n2 n5} - r8c4{n5 n9} - r9c5{n9 n2} ==> r5c5≠2
biv-chain[3]: c4n5{r8 r5} - r5n2{c4 c9} - c9n6{r5 r8} ==> r8c9≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles