This is my first time to use Medusa 3D coloring (M3D). I was able to solve the
following puzzle, but I have some questions. The M3D rules from sudokuwiki.org
are after line 73. At line 88 I start the coloring. At line 119 I note some
'collisions' with the two colors. I did not see a rule that covered that.
1. Did I assign the color and its 'opposite' correctly? Line 88+
2. Did I manage the collision between colors correctly? Line 119+
3. Did I extend the 'opposite' color correctly? Line 149+
4. Is my logic OK in 'opposite' color was not part of the solution? ~Line 177
5. If the above are OK, why did my eliminations not agree with HoDoKu? Line 177+
I was able to solve the problem, but I wanted help with my procedure! Thanks!
Unfair (4274) by HoDoKu - v2.1.3
- Code: Select all
1 . . | . 8 . | 5 3 .
. . 3 | . 9 7 | . 6 .
. . . | . . . | . 8 7
------+-------+------
. . . | . . . | . 7 .
6 . 1 | . 4 . | 3 . 2
. 2 . | . . . | . . .
------+-------+------
7 1 . | . . . | . . .
. 8 . | 5 6 . | 7 . .
. 6 4 | . 7 . | . . 8
Solution:
- Code: Select all
1 4 7 | 2 8 6 | 5 3 9
8 5 3 | 4 9 7 | 2 6 1
2 9 6 | 3 5 1 | 4 8 7
------+-------+------
4 3 8 | 6 2 9 | 1 7 5
6 7 1 | 8 4 5 | 3 9 2
5 2 9 | 7 1 3 | 8 4 6
------+-------+------
7 1 5 | 9 3 8 | 6 2 4
9 8 2 | 5 6 4 | 7 1 3
3 6 4 | 1 7 2 | 9 5 8
Line 43:
r2c1=8, r2c2=5, r4c2=3, n2r23c7 => r79c7<>2, n4r46c1 => r3c1<>4,
n8r5c46 => r46c46<>8
- Code: Select all
1 . . | . 8 . | 5 3 .
8 5 3 | . 9 7 | . 6 .
. . . | . . . | . 8 7
------+-------+------
. 3 . | . . . | . 7 .
6 . 1 | . 4 . | 3 . 2
. 2 . | . . . | . . .
------+-------+------
7 1 . | . . . | . . .
. 8 . | 5 6 . | 7 . .
. 6 4 | . 7 . | . . 8
- Code: Select all
.-----------------.---------------------.--------------------.
| 1 479 2679 | 246 8 246 | 5 3 49 |
| 8 5 3 | 124 9 7 | 124 6 14 |
| 29 49 269 | 12346 1235 123456 | 1249 8 7 |
:-----------------+---------------------+--------------------:
| 459 3 589 | 1269 125 12569 | 14689 7 14569 |
| 6 79 1 | 789 4 589 | 3 59 2 |
| 459 2 5789 | 13679 135 13569 | 14689 1459 14569 |
:-----------------+---------------------+--------------------:
| 7 1 259 | 23489 23 23489 | 469 2459 34569 |
| 239 8 29 | 5 6 12349 | 7 1249 1349 |
| 2359 6 4 | 1239 7 1239 | 19 1259 8 |
'-----------------'---------------------'--------------------'
Line 73:
3D-Medusa Elimination Rules - Summary from sudowiki.org
1. same color twice in a cell eliminates that color
2. twice in a house for same digit eliminates that color
3. 2 colors in a cell eliminates that candidate in the cell
4. 2 colors in a unit for same candy - all candidates that can
see both colors can be eliminated
5. 2 colors elsewhere that can see same candidate that
candidate can be removed
6. any un-colored candidate that sees a colored candidate
elsewhere and OPPOSITE colored candidate in same cell
it can be removed
Line 88:
Using Hodoku Player: 3D Medusa coloring
red = one color at n49r2c2=9
lt-red = 'opposite' color at n49r1c9=4, red is 9 at this BV cell
(firstly is the correct procedure?)
red start at n49r3c2
------------------------
01 9 r3c2=9 by choice
02 9 r1c9=9
03 7 r5c2=7
04 7 r1c3=7
05 7 r6c4=7
06 4 r1c2=4
07 2 r3c1=2
08 2 r2c7=2
09 6 r3c3=6
red-light choose n49r1c9=4
--------------------------
01 4 r1c9=4
02 1 r2c9=1n
03 2 r2c7=2n - red
04 9 r3c7=9n
05 4 r3c2=4n - 9 is red
06 2 r3c1=2n - red
07 6 r3c3=6n - red
08 4 r2c4=4n
Line 119:
Note we have some collisions of colors in cells.
It is not explicitly in Medusa 3D (M3D) rules, but I assume if
a candie in a cell is colored with two 'opposite' colors
(red & red-light are just that) then that candie must be
a solution.
I proceeded from here, but have some problems with some of the eliminations
Continuing Trace where opposite colors indicate same cell is solution
---------------------------------------------------------------------
-07 2 r2c7=2n opposite colors agree
-08 2 r3c1=2n opposite colors agree
-09 6 r3c3=6n opposite colors agree
-10 26 n26r1c46 => r1c46=26
So I eliminate the collisions and reorder and renumber the
red cells and the light-red cells:
red start at n49r3c2 red-light choose n49r1c9=4
------------------------ --------------------------
01 9 r3c2=9 by choice 01 4 r3c2=4n by choice
02 4 r1c2=4n 02 4 r1c9=4
03 7 r1c3=7bcr 03 4 r2c4=4n
04 9 r1c9=9br 04 1 r2c9=1n
05 7 r5c2=7n 05 9 r3c7=9n
06 7 r6c4=7bcr
Line 149:
Seeing no additions to red, look at light red
06 1 r9c7=1n
07 1 r6c8=1bc
08 1 r8c6=1br
09 4 r7c6=4bc
10 4 r8c8=4r
11 6 r7c7=6n
12 8 r7c4=8br
13 8 r5c6=8bcr
14 39 r8c19=39 => r8c3=2
15 79 r5c24=79 => r5c8=5
16 5 r7c9=5bc
17 5 r9c1=5br
18 9 r7c3=9n
19 9 r1c2=9br
20 9 r8c9=9r
21 2 r7c8=2n
22 3 r8c1=3n
23 7 r1c3=7n
24 6 r46c9=6 same color of same candie in a house
25 7 r5c2=7 for both colors
So light-red cannot be part of a solution
delete all light-red candies
Line 177: x marks a conflict with what HoDoKu says is a valid elimination-why?
-11 r1c2<>9
-12 r1c9<>4
-13 r2c4<>4 x
-14 r2c9<>1 x
-15 r3c2<>4
-16 r3c7<>9
-17 r7c3<>9
-18 r7c4<>8
-19 r7c6<>4
-20 r7c7<>6 x
-21 r7c8<>2 x
-22 r7c9<>5 -
-23 r8c1<>3
-24 r8c2<>2
-25 r8c6<>1
-26 r8c8<>4
-27 r8c9<>9
-28 r9c1<>5
-29 r9c7<>1
Line 199: Start using the first few eliminations and then just solved from there.
-30 r1c2=4n
-31 r1c9=9n
-32 r3c2=9n
-33 r5c2=7n
-34 r6c1=7bcr
-35 r9c1=3bc
-36 r8c1=9n
-37 r8c3=2n
-38 r8c3=5n
-39 r9c8=5n
-39 r5c8=9n
-40 r5c4=8n
-41 r5c6=5n
-42 r7c8=2bc
-43 r3c5=5bcr
-44 r7c6=8bcr
-45 r7c5=3n
-46 r6c5=1n
-47 r4c5=2n Cost2=0
-48 r8c9=3bcr
-49 r6c6=3br
-50 r3c4=3bcr Cost3=0
-51 r6c8=4n
-52 r4c1=4bcr
-53 r8c6=4r
-54 r2c4=4bc
-55 r3c7=4br
-56 r7c9=4bcr
-57 r2c9=1n
-58 r3c6=1n
-59 r4c7=1br
-60 r8c8=1n
-61 r9c4=1bcr Cost1=0
-62 2 r1c4=2c
-63 2 r9c6=2bcr Cost2=0
-64 5 r6c1=5n
-65 5 r4c9=5n Cost5=0
-66 6 r1c6=6n
-67 6 r4c4=6c
-68 6 r6c9=6n
-69 6 r7c7=6br Cost6=0
-70 8 r6c7=8n
-71 8 r3c3=8bcr Cost8=0
-72 9 r4c6=9n
-73 9 r6c3=9n
-74 9 r7c4=9n
-75 9 r9c7=9n Cost9=0 Done!
147286539853497261296351487438629175671845392529713846715938624982564713364172958
- Code: Select all
.---------.---------.---------.
| 1 4 7 | 2 8 6 | 5 3 9 |
| 8 5 3 | 4 9 7 | 2 6 1 |
| 2 9 6 | 3 5 1 | 4 8 7 |
:---------+---------+---------:
| 4 3 8 | 6 2 9 | 1 7 5 |
| 6 7 1 | 8 4 5 | 3 9 2 |
| 5 2 9 | 7 1 3 | 8 4 6 |
:---------+---------+---------:
| 7 1 5 | 9 3 8 | 6 2 4 |
| 9 8 2 | 5 6 4 | 7 1 3 |
| 3 6 4 | 1 7 2 | 9 5 8 |
'---------'---------'---------'