#37012 in 158,276 T&E(3) min-expands

Post puzzles for others to solve here.

#37012 in 158,276 T&E(3) min-expands

Postby denis_berthier » Sat Apr 29, 2023 10:50 am

.
Code: Select all
+-------+-------+-------+
! . . . ! . 5 6 ! 7 8 . !
! . . . ! 1 8 . ! . . . !
! 8 . 6 ! . . . ! 1 5 . !
+-------+-------+-------+
! . . . ! 8 7 . ! 3 9 . !
! . 7 8 ! . . . ! . . 2 !
! . . . ! 6 2 . ! 4 7 8 !
+-------+-------+-------+
! 5 . . ! 2 . . ! . . . !
! . . 2 ! . 1 . ! . . 7 !
! . . 1 ! . 6 8 ! . . . !
+-------+-------+-------+
....5678....18....8.6...15....87.39..78.....2...62.4785..2.......2.1...7..1.68...;7739;173004
SER = 10.6


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 12349 12349 349   ! 349   5     6     ! 7     8     349   !
   ! 349   5     7     ! 1     8     349   ! 269   2346  3469  !
   ! 8     349   6     ! 7     349   2     ! 1     5     349   !
   +-------------------+-------------------+-------------------+
   ! 1246  1246  45    ! 8     7     145   ! 3     9     156   !
   ! 13469 7     8     ! 3459  349   13459 ! 56    16    2     !
   ! 139   139   359   ! 6     2     1359  ! 4     7     8     !
   +-------------------+-------------------+-------------------+
   ! 5     34689 349   ! 2     349   7     ! 689   1346  13469 !
   ! 3469  34689 2     ! 3459  1     3459  ! 5689  346   7     !
   ! 7     349   1     ! 3459  6     8     ! 259   234   3459  !
   +-------------------+-------------------+-------------------+
159 candidates.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #37012 in 158,276 T&E(3) min-expands

Postby totuan » Sat Apr 29, 2023 6:53 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 12     12    *349    |*349    5      6      | 7      8      349    |
 |*349    5      7      | 1      8     *349    | 269    2346   3469   |
 | 8     *349    6      | 7     *349    2      | 1      5      349    |
 |----------------------+----------------------+----------------------|
 | 1246   1246   45     | 8      7      145    | 3      9      15-6   |
 | 3469-1 7      8      | 3459   349    13459  | 56     16     2      |
 | 139    139    359    | 6      2      1359   | 4      7      8      |
 |----------------------+----------------------+----------------------|
 | 5      34689 *349    | 2     *349    7      | 689    1346   13469  |
 |*349+6  34689  2      | 3459   1     *349+5  | 5689   346    7      |
 | 7     *349    1      |*349+5  6      8      | 259    234    3459   |
 *--------------------------------------------------------------------*

My path for this one:
Tridagon (349) * marked cells => (6)r8c1=(5)r8c6=(5)r9c4
01: Present as diagram: => r5c1<>1, r4c9<>6
Code: Select all
(6)r8c1-(6)r45c1=(126)r4c12,r1c1*
 ||
(5)r9c5-r9c9=r4c9----(5=16)r5c78*
 ||                 |
(5)r8c6-r89c4=r5c4--

Code: Select all
 *--------------------------------------------------------------------*
 | 12     12    *349    |*349    5      6      | 7      8      349    |
 |*349    5      7      | 1      8     *349    | 269    2346   3469   |
 | 8     *349    6      | 7     *349    2      | 1      5      349    |
 |----------------------+----------------------+----------------------|
 | 26     26     45     | 8      7      145    | 3      9      15d    |
 |*349    7      8      |*349+5b*349    13459  | 56c    16     2      |
 | 139    139    359    | 6      2      359    | 4      7      8      |
 |----------------------+----------------------+----------------------|
 | 5      34689 *349    | 2     *349A   7      | 689    1346   13469  |
 | 3469   34689  2      | 349-5  1     *349+5  | 5689   346    7      |
 | 7     *349    1      |*349+5a 6      8      | 259    234    349-5  |
 *--------------------------------------------------------------------*

Impossible pattern (349) * marked cells => (5)r5c4=(5)r8c6=(5)r9c4
02: Impossible pattern (349) * marked cells => (5)r59c4=(5)r8c6 => r8c4<>5
03: 5’s abcd => r9c9<>5, some singles

Code: Select all
 *--------------------------------------------------------------------*
 | 12     12    *39#    |*349    5      6      | 7      8     *349    |
 |*349    5      7      | 1      8     *349    | 29     234    6      |
 | 8     *349    6      | 7     *349    2      | 1      5     *349    |
 |----------------------+----------------------+----------------------|
 | 26     26     4      | 8      7      1      | 3      9      5      |
 |*39#    7      8      |*349+5 *349    349-5  | 6      1      2      |
 | 139    139    5      | 6      2      39     | 4      7      8      |
 |----------------------+----------------------+----------------------|
 | 5      34689 *39#    | 2     *349A   7      | 89     346    1      |
 | 3469   34689  2      |*349    1     *349+5  | 589    346    7      |
 | 7     *349    1      | 349-5  6      8      | 259    234   *349    |
 *--------------------------------------------------------------------*

Impossible pattern (349) * marked cells => (5)r5c4=(5)r8c6
Note: this impossible pattern is by (39) # marked cells

04: Impossible pattern (349) * marked cells => (5)r5c4=(5)r8c6 => r5c6, r9c4<>5, some singles

Code: Select all
 *--------------------------------------------------------------------*
 | 12     12    *39     |*349    5      6      | 7      8      349    |
 |*349    5      7      | 1      8     *349    | 2      34     6      |
 | 8     *349    6      | 7     *349    2      | 1      5      349    |
 |----------------------+----------------------+----------------------|
 | 26     26     4      | 8      7      1      | 3      9      5      |
 |*39     7      8      | 5     *349    349    | 6      1      2      |
 | 139    139    5      | 6      2      39     | 4      7      8      |
 |----------------------+----------------------+----------------------|
 | 5      34689 *39     | 2     *349A   7      | 89     346    1      |
 |*349+6  34689  2      |*349    1      5      | 89     346    7      |
 | 7     *349    1      |*349    6      8      | 5      2      34     |
 *--------------------------------------------------------------------*

05: Impossible pattern (349) * marked cells => r8c1=6 then ER-4.4 and one simple move to finish.

Thanks for the puzzle!
totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: #37012 in 158,276 T&E(3) min-expands

Postby denis_berthier » Sun Apr 30, 2023 3:47 am

totuan wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 12     12    *39#    |*349    5      6      | 7      8     *349    |
 |*349    5      7      | 1      8     *349    | 29     234    6      |
 | 8     *349    6      | 7     *349    2      | 1      5     *349    |
 |----------------------+----------------------+----------------------|
 | 26     26     4      | 8      7      1      | 3      9      5      |
 |*39#    7      8      |*349+5 *349    349-5  | 6      1      2      |
 | 139    139    5      | 6      2      39     | 4      7      8      |
 |----------------------+----------------------+----------------------|
 | 5      34689 *39#    | 2     *349A   7      | 89     346    1      |
 | 3469   34689  2      |*349    1     *349+5  | 589    346    7      |
 | 7     *349    1      | 349-5  6      8      | 259    234   *349    |
 *--------------------------------------------------------------------*

Impossible pattern (349) * marked cells => (5)r5c4=(5)r8c6
Note: this impossible pattern is by (39) # marked cells

04: Impossible pattern (349) * marked cells => (5)r5c4=(5)r8c6 => r5c6, r9c4<>5, some singles


What does "this impossible pattern is by (39) # marked cells" mean? The three #-marked 2-digit cells don't form an impossible pattern by themselves.
.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #37012 in 158,276 T&E(3) min-expands

Postby totuan » Sun Apr 30, 2023 6:13 am

denis_berthier wrote:What does "this impossible pattern is by (39) # marked cells" mean? The three #-marked 2-digit cells don't form an impossible pattern by themselves.

That meant: because of (39) # marked cells => Impossible pattern (349) * marked cells.
Proving for Impossible pattern – not nice :D
Hidden Text: Show
Code: Select all
 *-----------------------------------------------------------*
 | .     .     39    | 349   .     .     | .     .     349   |
 | 349   .     .     | .     .     349   | .     .     .     |
 | .     349   .     | .     349   .     | .     .     349   |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | 39    .     .     | 349   349   .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     39    | .     349A  .     | .     .     .     |
 | .     .     .     | 349   .     349   | .     .     .     |
 | .     349   .     | .     .     .     | .     .     349   |
 *-----------------------------------------------------------*

A=3 => two 9’s on R3 => impossible
 *-----------------------------------------------------------*
 | .     .     3     | 49    .     .     | .     .     49    |
 | 4     .     .     | .     .     3     | .     .     .     |
 | .     9     .     | .     9     .     | .     .     349   |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | 9     .     .     | 3     4     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     9     | .     3     .     | .     .     .     |
 | .     .     .     | 49    .     49    | .     .     .     |
 | .     34    .     | .     .     .     | .     .     349   |
 *-----------------------------------------------------------*
The same for A=9 => two 3’s on R3 => impossible

A=4 =>
 *-----------------------------------------------------------*
 | .     .    *39    |*39    .     .     | .     .     4     |
 | 39    .     .     | .     .     4     | .     .     .     |
 | .     4     .     | .    *39    .     | .     .    *39    |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     .     | .     .     .     |
 | 39    .     .     | 4     39    .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .    *39    | .     4     .     | .     .     .     |
 | .     .     .     | 39    .     39    | .     .     .     |
 | .    *39    .     | .     .     .     | .     .    *39    |
 *-----------------------------------------------------------*
Oddagon(39) * marked cells => impossible
Add: in this impossible pattern, (349)r8c6 is not necessary.

Sorry by my too bad in English :oops:
totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: #37012 in 158,276 T&E(3) min-expands

Postby denis_berthier » Sun Apr 30, 2023 7:12 am

.
OK. That's a 2,3-digit pattern in 17 cells, spanning 7 rows, 7 columns and 8 blocks
I wonder if there's a smaller (14-cell) pattern in eleven's list, maybe skipping the cells in stack 3 (which have no guardian).
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #37012 in 158,276 T&E(3) min-expands

Postby denis_berthier » Tue May 02, 2023 5:02 am

.
Here's my solution, with one chain of length 6 and all the rest of max length 4, and using only the two most frequent impossible patterns in two stacks (besides Tridaogon).
The difficulty in such puzzles is finding the good impossible patterns, because there are many possible combinations of 349-cells with additional digits.
Trying first the 5 patterns in Select1, which are close to Tridagon) is a good strategy.

Code: Select all
hidden-pairs-in-a-row: r1{n1 n2}{c1 c2} ==> r1c2≠9, r1c2≠4, r1c2≠3, r1c1≠9, r1c1≠4, r1c1≠3


The three ORk-relations that will be used. As usual in my approach, they are detected early (after S3), before they have too much chance to degenerate, and one can follow their numbers of guardians decrease along the resolution path (which is mere bookkeeping):

Code: Select all
Trid-OR3-relation for digits 3, 4 and 9 in blocks:
        b1, with cells (marked #): r1c3, r2c1, r3c2
        b2, with cells (marked #): r1c4, r2c6, r3c5
        b7, with cells (marked #): r7c3, r8c1, r9c2
        b8, with cells (marked #): r7c5, r8c6, r9c4
with 3 guardians (in cells marked @): n6r8c1 n5r8c6 n5r9c4

   +----------------------+----------------------+----------------------+
   ! 12     12     349#   ! 349#   5      6      ! 7      8      349    !
   ! 349#   5      7      ! 1      8      349#   ! 269    2346   3469   !
   ! 8      349#   6      ! 7      349#   2      ! 1      5      349    !
   +----------------------+----------------------+----------------------+
   ! 1246   1246   45     ! 8      7      145    ! 3      9      156    !
   ! 13469  7      8      ! 3459   349    13459  ! 56     16     2      !
   ! 139    139    359    ! 6      2      1359   ! 4      7      8      !
   +----------------------+----------------------+----------------------+
   ! 5      34689  349#   ! 2      349#   7      ! 689    1346   13469  !
   ! 3469#@ 34689  2      ! 3459   1      3459#@ ! 5689   346    7      !
   ! 7      349#   1      ! 3459#@ 6      8      ! 259    234    3459   !
   +----------------------+----------------------+----------------------+

EL13c290s-OR4-relation for digits: 3, 4 and 9
   in cells (marked #): (r5c5 r5c4 r5c1 r9c4 r9c2 r7c5 r7c3 r1c4 r1c3 r3c5 r3c2 r2c6 r2c1)
   with 4 guardians (in cells marked @) : n5r5c4 n1r5c1 n6r5c1 n5r9c4
   +-------------------------+-------------------------+-------------------------+
   ! 12      12      349#    ! 349#    5       6       ! 7       8       349     !
   ! 349#    5       7       ! 1       8       349#    ! 269     2346    3469    !
   ! 8       349#    6       ! 7       349#    2       ! 1       5       349     !
   +-------------------------+-------------------------+-------------------------+
   ! 1246    1246    45      ! 8       7       145     ! 3       9       156     !
   ! 13469#@ 7       8       ! 3459#@  349#    13459   ! 56      16      2       !
   ! 139     139     359     ! 6       2       1359    ! 4       7       8       !
   +-------------------------+-------------------------+-------------------------+
   ! 5       34689   349#    ! 2       349#    7       ! 689     1346    13469   !
   ! 3469    34689   2       ! 3459    1       3459    ! 5689    346     7       !
   ! 7       349#    1       ! 3459#@  6       8       ! 259     234     3459    !
   +-------------------------+-------------------------+-------------------------+

EL14c30s-OR5-relation for digits: 3, 4 and 9
   in cells (marked #): (r5c5 r5c1 r7c5 r7c3 r8c4 r8c1 r9c4 r9c2 r3c5 r3c2 r1c4 r1c3 r2c6 r2c1)
   with 5 guardians (in cells marked @) : n1r5c1 n6r5c1 n5r8c4 n6r8c1 n5r9c4
   +-------------------------+-------------------------+-------------------------+
   ! 12      12      349#    ! 349#    5       6       ! 7       8       349     !
   ! 349#    5       7       ! 1       8       349#    ! 269     2346    3469    !
   ! 8       349#    6       ! 7       349#    2       ! 1       5       349     !
   +-------------------------+-------------------------+-------------------------+
   ! 1246    1246    45      ! 8       7       145     ! 3       9       156     !
   ! 13469#@ 7       8       ! 3459    349#    13459   ! 56      16      2       !
   ! 139     139     359     ! 6       2       1359    ! 4       7       8       !
   +-------------------------+-------------------------+-------------------------+
   ! 5       34689   349#    ! 2       349#    7       ! 689     1346    13469   !
   ! 3469#@  34689   2       ! 3459#@  1       3459    ! 5689    346     7       !
   ! 7       349#    1       ! 3459#@  6       8       ! 259     234     3459    !
   +-------------------------+-------------------------+-------------------------+


Trid-OR3-whip[4]: r5c7{n6 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n6r8c1 | n5r8c6}} - b5n5{r4c6 .} ==> r8c7≠6
Trid-OR3-whip[4]: r5c7{n6 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n6r8c1 | n5r8c6}} - b5n5{r4c6 .} ==> r5c1≠6


Code: Select all
   +-------------------+-------------------+-------------------+
   ! 12    12    349   ! 349   5     6     ! 7     8     349   !
   ! 349   5     7     ! 1     8     349   ! 269   2346  3469  !
   ! 8     349   6     ! 7     349   2     ! 1     5     349   !
   +-------------------+-------------------+-------------------+
   ! 1246  1246  45    ! 8     7     145   ! 3     9     156   !
   ! 1349  7     8     ! 3459  349   13459 ! 56    16    2     !
   ! 139   139   359   ! 6     2     1359  ! 4     7     8     !
   +-------------------+-------------------+-------------------+
   ! 5     34689 349   ! 2     349   7     ! 689   1346  13469 !
   ! 3469  34689 2     ! 3459  1     3459  ! 589   346   7     !
   ! 7     349   1     ! 3459  6     8     ! 259   234   3459  !
   +-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c290s-OR4-relation between candidates n5r5c4 n1r5c1 n6r5c1 n5r9c4 has just been eliminated.
There remains an EL13c290s-OR3-relation between candidates: n5r5c4 n1r5c1 n5r9c4

At least one candidate of a previous EL14c30s-OR5-relation between candidates n1r5c1 n6r5c1 n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR4-relation between candidates: n1r5c1 n5r8c4 n6r8c1 n5r9c4


whip[1]: r5n6{c8 .} ==> r4c9≠6
hidden-pairs-in-a-row: r4{n2 n6}{c1 c2} ==> r4c2≠4, r4c2≠1, r4c1≠4, r4c1≠1
biv-chain[3]: c9n6{r2 r7} - r7n1{c9 c8} - r5c8{n1 n6} ==> r2c8≠6
z-chain[3]: c2n4{r9 r3} - c5n4{r3 r5} - b4n4{r5c1 .} ==> r7c3≠4
EL13c290s-OR3-whip[4]: c3n5{r6 r4} - b4n4{r4c3 r5c1} - OR3{{n1r5c1 n5r5c4 | n5r9c4}} - c9n5{r9 .} ==> r6c6≠5
singles ==> r6c3=5, r4c3=4
whip[3]: r1n4{c9 c4} - r3n4{c5 c2} - r9n4{c2 .} ==> r7c9≠4
EL13c290s-OR3-whip[3]: r4c6{n1 n5} - OR3{{n5r5c4 n1r5c1 | n5r9c4}} - c9n5{r9 .} ==> r5c6≠1
Trid-OR3-whip[6]: r6n1{c2 c6} - r4c6{n1 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n5r8c6 | n6r8c1}} - r4c1{n6 n2} - r1c1{n2 .} ==> r5c1≠1

singles ==> r5c8=1, r4c9=5, r4c6=1, r5c7=6, r2c9=6, r7c9=1

Code: Select all
   +-------------------+-------------------+-------------------+
   ! 12    12    39    ! 349   5     6     ! 7     8     349   !
   ! 349   5     7     ! 1     8     349   ! 29    234   6     !
   ! 8     349   6     ! 7     349   2     ! 1     5     349   !
   +-------------------+-------------------+-------------------+
   ! 26    26    4     ! 8     7     1     ! 3     9     5     !
   ! 39    7     8     ! 3459  349   3459  ! 6     1     2     !
   ! 139   139   5     ! 6     2     39    ! 4     7     8     !
   +-------------------+-------------------+-------------------+
   ! 5     34689 39    ! 2     349   7     ! 89    346   1     !
   ! 3469  34689 2     ! 3459  1     3459  ! 589   346   7     !
   ! 7     349   1     ! 3459  6     8     ! 259   234   349   !
   +-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c290s-OR3-relation between candidates n5r5c4 n1r5c1 n5r9c4 has just been eliminated.
There remains an EL13c290s-OR2-relation between candidates: n5r5c4 n5r9c4

At least one candidate of a previous EL14c30s-OR4-relation between candidates n1r5c1 n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR3-relation between candidates: n5r8c4 n6r8c1 n5r9c4



EL13c290s-OR2-whip[1]: OR2{{n5r9c4 n5r5c4 | .}} ==> r8c4≠5

Code: Select all
   +-------------------+-------------------+-------------------+
   ! 12    12    39    ! 349   5     6     ! 7     8     349   !
   ! 349   5     7     ! 1     8     349   ! 29    234   6     !
   ! 8     349   6     ! 7     349   2     ! 1     5     349   !
   +-------------------+-------------------+-------------------+
   ! 26    26    4     ! 8     7     1     ! 3     9     5     !
   ! 39    7     8     ! 3459  349   3459  ! 6     1     2     !
   ! 139   139   5     ! 6     2     39    ! 4     7     8     !
   +-------------------+-------------------+-------------------+
   ! 5     34689 39    ! 2     349   7     ! 89    346   1     !
   ! 3469  34689 2     ! 349   1     3459  ! 589   346   7     !
   ! 7     349   1     ! 3459  6     8     ! 259   234   349   !
   +-------------------+-------------------+-------------------+
At least one candidate of a previous EL14c30s-OR3-relation between candidates n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR2-relation between candidates: n6r8c1 n5r9c4


biv-chain[3]: r8n8{c2 c7} - r7c7{n8 n9} - r7c3{n9 n3} ==> r8c2≠3
EL14c30s-OR2-whip[3]: OR2{{n6r8c1 | n5r9c4}} - c7n5{r9 r8} - r8n8{c7 .} ==> r8c2≠6
EL14c30s-OR2-ctr-whip[4]: c1n4{r2 r8} - c6n4{r8 r5} - b5n5{r5c6 r5c4} - OR2{{n6r8c1 n5r9c4 | .}} ==> r2c8≠4

whip[1]: c8n4{r9 .} ==> r9c9≠4
t-whip[4]: r9c9{n3 n9} - c7n9{r9 r2} - c7n2{r2 r9} - r9n5{c7 .} ==> r9c4≠3
EL14c30s-OR2-ctr-whip[4]: c6n5{r5 r8} - c6n4{r8 r2} - c1n4{r2 r8} - OR2{{n6r8c1 n5r9c4 | .}} ==> r5c6≠9
EL14c30s-OR2-ctr-whip[4]: c6n5{r5 r8} - c6n4{r8 r2} - c1n4{r2 r8} - OR2{{n6r8c1 n5r9c4 | .}} ==> r5c6≠3

whip[5]: c3n9{r7 r1} - c4n9{r1 r5} - r5c1{n9 n3} - b1n3{r2c1 r3c2} - c5n3{r3 .} ==> r7c5≠9
EL14c30s-OR2-whip[2]: OR2{{n6r8c1 | n5r9c4}} - b8n9{r9c4 .} ==> r8c1≠9
t-whip[4]: r7c5{n4 n3} - c3n3{r7 r1} - c4n3{r1 r5} - c4n5{r5 .} ==> r9c4≠4

The end is easy, in BC4:
Code: Select all
biv-chain[4]: r2c7{n9 n2} - c8n2{r2 r9} - r9n4{c8 c2} - b1n4{r3c2 r2c1} ==> r2c1≠9
whip[1]: c1n9{r6 .} ==> r6c2≠9
biv-chain[4]: r7c5{n4 n3} - r7c3{n3 n9} - b1n9{r1c3 r3c2} - c5n9{r3 r5} ==> r5c5≠4
naked-pairs-in-a-block: b5{r5c5 r6c6}{n3 n9} ==> r5c4≠9, r5c4≠3
finned-x-wing-in-columns: n3{c4 c3}{r1 r8} ==> r8c1≠3
finned-x-wing-in-columns: n3{c3 c4}{r1 r7} ==> r7c5≠3
naked-single ==> r7c5=4
whip[1]: b8n3{r8c6 .} ==> r8c8≠3
naked-pairs-in-a-row: r8{c1 c8}{n4 n6} ==> r8c2≠4
biv-chain[3]: b1n9{r1c3 r3c2} - r3n4{c2 c9} - r1n4{c9 c4} ==> r1c4≠9
whip[1]: c4n9{r9 .} ==> r8c6≠9
biv-chain[3]: c4n3{r1 r8} - b8n9{r8c4 r9c4} - r9c9{n9 n3} ==> r1c9≠3
biv-chain[3]: r1c4{n3 n4} - r1c9{n4 n9} - r2n9{c7 c6} ==> r2c6≠3
biv-chain[2]: r2n3{c8 c1} - c3n3{r1 r7} ==> r7c8≠3
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles