.
Here's my solution, with one chain of length 6 and all the rest of max length 4, and using only the two most frequent impossible patterns in two stacks (besides Tridaogon).
The difficulty in such puzzles is finding the good impossible patterns, because there are many possible combinations of 349-cells with additional digits.
Trying first the 5 patterns in Select1, which are close to Tridagon) is a good strategy.
- Code: Select all
hidden-pairs-in-a-row: r1{n1 n2}{c1 c2} ==> r1c2≠9, r1c2≠4, r1c2≠3, r1c1≠9, r1c1≠4, r1c1≠3
The three ORk-relations that will be used. As usual in my approach, they are detected early (after S3), before they have too much chance to degenerate, and one can follow their numbers of guardians decrease along the resolution path (which is mere bookkeeping):
- Code: Select all
Trid-OR3-relation for digits 3, 4 and 9 in blocks:
b1, with cells (marked #): r1c3, r2c1, r3c2
b2, with cells (marked #): r1c4, r2c6, r3c5
b7, with cells (marked #): r7c3, r8c1, r9c2
b8, with cells (marked #): r7c5, r8c6, r9c4
with 3 guardians (in cells marked @): n6r8c1 n5r8c6 n5r9c4
+----------------------+----------------------+----------------------+
! 12 12 349# ! 349# 5 6 ! 7 8 349 !
! 349# 5 7 ! 1 8 349# ! 269 2346 3469 !
! 8 349# 6 ! 7 349# 2 ! 1 5 349 !
+----------------------+----------------------+----------------------+
! 1246 1246 45 ! 8 7 145 ! 3 9 156 !
! 13469 7 8 ! 3459 349 13459 ! 56 16 2 !
! 139 139 359 ! 6 2 1359 ! 4 7 8 !
+----------------------+----------------------+----------------------+
! 5 34689 349# ! 2 349# 7 ! 689 1346 13469 !
! 3469#@ 34689 2 ! 3459 1 3459#@ ! 5689 346 7 !
! 7 349# 1 ! 3459#@ 6 8 ! 259 234 3459 !
+----------------------+----------------------+----------------------+
EL13c290s-OR4-relation for digits: 3, 4 and 9
in cells (marked #): (r5c5 r5c4 r5c1 r9c4 r9c2 r7c5 r7c3 r1c4 r1c3 r3c5 r3c2 r2c6 r2c1)
with 4 guardians (in cells marked @) : n5r5c4 n1r5c1 n6r5c1 n5r9c4
+-------------------------+-------------------------+-------------------------+
! 12 12 349# ! 349# 5 6 ! 7 8 349 !
! 349# 5 7 ! 1 8 349# ! 269 2346 3469 !
! 8 349# 6 ! 7 349# 2 ! 1 5 349 !
+-------------------------+-------------------------+-------------------------+
! 1246 1246 45 ! 8 7 145 ! 3 9 156 !
! 13469#@ 7 8 ! 3459#@ 349# 13459 ! 56 16 2 !
! 139 139 359 ! 6 2 1359 ! 4 7 8 !
+-------------------------+-------------------------+-------------------------+
! 5 34689 349# ! 2 349# 7 ! 689 1346 13469 !
! 3469 34689 2 ! 3459 1 3459 ! 5689 346 7 !
! 7 349# 1 ! 3459#@ 6 8 ! 259 234 3459 !
+-------------------------+-------------------------+-------------------------+
EL14c30s-OR5-relation for digits: 3, 4 and 9
in cells (marked #): (r5c5 r5c1 r7c5 r7c3 r8c4 r8c1 r9c4 r9c2 r3c5 r3c2 r1c4 r1c3 r2c6 r2c1)
with 5 guardians (in cells marked @) : n1r5c1 n6r5c1 n5r8c4 n6r8c1 n5r9c4
+-------------------------+-------------------------+-------------------------+
! 12 12 349# ! 349# 5 6 ! 7 8 349 !
! 349# 5 7 ! 1 8 349# ! 269 2346 3469 !
! 8 349# 6 ! 7 349# 2 ! 1 5 349 !
+-------------------------+-------------------------+-------------------------+
! 1246 1246 45 ! 8 7 145 ! 3 9 156 !
! 13469#@ 7 8 ! 3459 349# 13459 ! 56 16 2 !
! 139 139 359 ! 6 2 1359 ! 4 7 8 !
+-------------------------+-------------------------+-------------------------+
! 5 34689 349# ! 2 349# 7 ! 689 1346 13469 !
! 3469#@ 34689 2 ! 3459#@ 1 3459 ! 5689 346 7 !
! 7 349# 1 ! 3459#@ 6 8 ! 259 234 3459 !
+-------------------------+-------------------------+-------------------------+
Trid-OR3-whip[4]: r5c7{n6 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n6r8c1 | n5r8c6}} - b5n5{r4c6 .} ==> r8c7≠6
Trid-OR3-whip[4]: r5c7{n6 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n6r8c1 | n5r8c6}} - b5n5{r4c6 .} ==> r5c1≠6- Code: Select all
+-------------------+-------------------+-------------------+
! 12 12 349 ! 349 5 6 ! 7 8 349 !
! 349 5 7 ! 1 8 349 ! 269 2346 3469 !
! 8 349 6 ! 7 349 2 ! 1 5 349 !
+-------------------+-------------------+-------------------+
! 1246 1246 45 ! 8 7 145 ! 3 9 156 !
! 1349 7 8 ! 3459 349 13459 ! 56 16 2 !
! 139 139 359 ! 6 2 1359 ! 4 7 8 !
+-------------------+-------------------+-------------------+
! 5 34689 349 ! 2 349 7 ! 689 1346 13469 !
! 3469 34689 2 ! 3459 1 3459 ! 589 346 7 !
! 7 349 1 ! 3459 6 8 ! 259 234 3459 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c290s-OR4-relation between candidates n5r5c4 n1r5c1 n6r5c1 n5r9c4 has just been eliminated.
There remains an EL13c290s-OR3-relation between candidates: n5r5c4 n1r5c1 n5r9c4
At least one candidate of a previous EL14c30s-OR5-relation between candidates n1r5c1 n6r5c1 n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR4-relation between candidates: n1r5c1 n5r8c4 n6r8c1 n5r9c4
whip[1]: r5n6{c8 .} ==> r4c9≠6
hidden-pairs-in-a-row: r4{n2 n6}{c1 c2} ==> r4c2≠4, r4c2≠1, r4c1≠4, r4c1≠1
biv-chain[3]: c9n6{r2 r7} - r7n1{c9 c8} - r5c8{n1 n6} ==> r2c8≠6
z-chain[3]: c2n4{r9 r3} - c5n4{r3 r5} - b4n4{r5c1 .} ==> r7c3≠4
EL13c290s-OR3-whip[4]: c3n5{r6 r4} - b4n4{r4c3 r5c1} - OR3{{n1r5c1 n5r5c4 | n5r9c4}} - c9n5{r9 .} ==> r6c6≠5singles ==> r6c3=5, r4c3=4
whip[3]: r1n4{c9 c4} - r3n4{c5 c2} - r9n4{c2 .} ==> r7c9≠4
EL13c290s-OR3-whip[3]: r4c6{n1 n5} - OR3{{n5r5c4 n1r5c1 | n5r9c4}} - c9n5{r9 .} ==> r5c6≠1
Trid-OR3-whip[6]: r6n1{c2 c6} - r4c6{n1 n5} - c9n5{r4 r9} - OR3{{n5r9c4 n5r8c6 | n6r8c1}} - r4c1{n6 n2} - r1c1{n2 .} ==> r5c1≠1singles ==> r5c8=1, r4c9=5, r4c6=1, r5c7=6, r2c9=6, r7c9=1
- Code: Select all
+-------------------+-------------------+-------------------+
! 12 12 39 ! 349 5 6 ! 7 8 349 !
! 349 5 7 ! 1 8 349 ! 29 234 6 !
! 8 349 6 ! 7 349 2 ! 1 5 349 !
+-------------------+-------------------+-------------------+
! 26 26 4 ! 8 7 1 ! 3 9 5 !
! 39 7 8 ! 3459 349 3459 ! 6 1 2 !
! 139 139 5 ! 6 2 39 ! 4 7 8 !
+-------------------+-------------------+-------------------+
! 5 34689 39 ! 2 349 7 ! 89 346 1 !
! 3469 34689 2 ! 3459 1 3459 ! 589 346 7 !
! 7 349 1 ! 3459 6 8 ! 259 234 349 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c290s-OR3-relation between candidates n5r5c4 n1r5c1 n5r9c4 has just been eliminated.
There remains an EL13c290s-OR2-relation between candidates: n5r5c4 n5r9c4
At least one candidate of a previous EL14c30s-OR4-relation between candidates n1r5c1 n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR3-relation between candidates: n5r8c4 n6r8c1 n5r9c4
EL13c290s-OR2-whip[1]: OR2{{n5r9c4 n5r5c4 | .}} ==> r8c4≠5- Code: Select all
+-------------------+-------------------+-------------------+
! 12 12 39 ! 349 5 6 ! 7 8 349 !
! 349 5 7 ! 1 8 349 ! 29 234 6 !
! 8 349 6 ! 7 349 2 ! 1 5 349 !
+-------------------+-------------------+-------------------+
! 26 26 4 ! 8 7 1 ! 3 9 5 !
! 39 7 8 ! 3459 349 3459 ! 6 1 2 !
! 139 139 5 ! 6 2 39 ! 4 7 8 !
+-------------------+-------------------+-------------------+
! 5 34689 39 ! 2 349 7 ! 89 346 1 !
! 3469 34689 2 ! 349 1 3459 ! 589 346 7 !
! 7 349 1 ! 3459 6 8 ! 259 234 349 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL14c30s-OR3-relation between candidates n5r8c4 n6r8c1 n5r9c4 has just been eliminated.
There remains an EL14c30s-OR2-relation between candidates: n6r8c1 n5r9c4
biv-chain[3]: r8n8{c2 c7} - r7c7{n8 n9} - r7c3{n9 n3} ==> r8c2≠3
EL14c30s-OR2-whip[3]: OR2{{n6r8c1 | n5r9c4}} - c7n5{r9 r8} - r8n8{c7 .} ==> r8c2≠6
EL14c30s-OR2-ctr-whip[4]: c1n4{r2 r8} - c6n4{r8 r5} - b5n5{r5c6 r5c4} - OR2{{n6r8c1 n5r9c4 | .}} ==> r2c8≠4whip[1]: c8n4{r9 .} ==> r9c9≠4
t-whip[4]: r9c9{n3 n9} - c7n9{r9 r2} - c7n2{r2 r9} - r9n5{c7 .} ==> r9c4≠3
EL14c30s-OR2-ctr-whip[4]: c6n5{r5 r8} - c6n4{r8 r2} - c1n4{r2 r8} - OR2{{n6r8c1 n5r9c4 | .}} ==> r5c6≠9
EL14c30s-OR2-ctr-whip[4]: c6n5{r5 r8} - c6n4{r8 r2} - c1n4{r2 r8} - OR2{{n6r8c1 n5r9c4 | .}} ==> r5c6≠3whip[5]: c3n9{r7 r1} - c4n9{r1 r5} - r5c1{n9 n3} - b1n3{r2c1 r3c2} - c5n3{r3 .} ==> r7c5≠9
EL14c30s-OR2-whip[2]: OR2{{n6r8c1 | n5r9c4}} - b8n9{r9c4 .} ==> r8c1≠9t-whip[4]: r7c5{n4 n3} - c3n3{r7 r1} - c4n3{r1 r5} - c4n5{r5 .} ==> r9c4≠4
The end is easy, in BC4:
- Code: Select all
biv-chain[4]: r2c7{n9 n2} - c8n2{r2 r9} - r9n4{c8 c2} - b1n4{r3c2 r2c1} ==> r2c1≠9
whip[1]: c1n9{r6 .} ==> r6c2≠9
biv-chain[4]: r7c5{n4 n3} - r7c3{n3 n9} - b1n9{r1c3 r3c2} - c5n9{r3 r5} ==> r5c5≠4
naked-pairs-in-a-block: b5{r5c5 r6c6}{n3 n9} ==> r5c4≠9, r5c4≠3
finned-x-wing-in-columns: n3{c4 c3}{r1 r8} ==> r8c1≠3
finned-x-wing-in-columns: n3{c3 c4}{r1 r7} ==> r7c5≠3
naked-single ==> r7c5=4
whip[1]: b8n3{r8c6 .} ==> r8c8≠3
naked-pairs-in-a-row: r8{c1 c8}{n4 n6} ==> r8c2≠4
biv-chain[3]: b1n9{r1c3 r3c2} - r3n4{c2 c9} - r1n4{c9 c4} ==> r1c4≠9
whip[1]: c4n9{r9 .} ==> r8c6≠9
biv-chain[3]: c4n3{r1 r8} - b8n9{r8c4 r9c4} - r9c9{n9 n3} ==> r1c9≠3
biv-chain[3]: r1c4{n3 n4} - r1c9{n4 n9} - r2n9{c7 c6} ==> r2c6≠3
biv-chain[2]: r2n3{c8 c1} - c3n3{r1 r7} ==> r7c8≠3
stte