- Code: Select all
..1 ..2 ..3
.2. .4. .5.
4.. 6.. 7..
..5 .2. ..8
.7. 3.8 2..
28. .16 375
.17 .3. .8.
5.. 8.. 1..
84. .61 537
Enjoy!
..1 ..2 ..3
.2. .4. .5.
4.. 6.. 7..
..5 .2. ..8
.7. 3.8 2..
28. .16 375
.17 .3. .8.
5.. 8.. 1..
84. .61 537
*--------------------------------------------------------------*
| 679 569 1 | 579 789 2 | 4689 469 3 |
| 3679 2 3689 | 1 4 379 | 689 5 69 |
>| 4 359 389 | 6 89 359 | 7 12 T1-2 |<
|--------------------+--------------------+--------------------|
| 1369 369 5 | 479 2 479 | 469 B1469 8 |
| 169 7 469 | 3 5 8 | 2 B1469 1469 |
>| 2 8 49 | 49 1 6 | 3 7 5 |<
|--------------------+--------------------+--------------------|
| 69 1 7 | 2459 3 459 | 469 8 2469 |
>| 5 369 2369 | 8 79 479 | 1 2469 T469-2 |<
| 8 4 29 | 29 6 1 | 5 3 7 |
*--------------------------------------------------------------*
Would you believe my solver detected an Exocet : r4c8 r5c8 r3c9 r8c9 1469. Removing the non-base digit 2 from both target cells solves the puzzle in 1 move !
The problem is that the cross lines aren't much use. Proving digit 1 is obvious, digits 489 require a full digit expansion.
At least this shows that if you can determine which of the two 2's in Row 7 is True you can solve the puzzle in 1 move.
Leren
DonM wrote : Well, on re-read, I guess I get it, though it gave the impression that the Exocet solved it in 1 move.
+-------------------+-----------------+------------------+
| 679 9(56) 1 | -7(5) 789 2 | 4689 469 3 |
| 3679 2 368 | 1 4 379 | 689 5 69 |
| 4 359 38 | 6 89 359 | 7 12 12 |
+-------------------+-----------------+------------------+
| 1369 39(6) 5 | (47) 2 479 | 469 1469 8 |
| 169 7 (46) | 3 5 8 | 2 1469 1469 |
| 2 8 (49) | (49) 1 6 | 3 7 5 |
+-------------------+-----------------+------------------+
| (69) 1 7 | 245 3 459 | 469 8 2469 |
| 5 39(6) 236 | 8 79 479 | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+-------------------+-----------------+------------------+
+-----------------------+-------------------+------------------------+
| 679 69 1 | 5 9-7(8) 2 | 69(48) 469 3 |
| 3679 2 368 | 1 4 379 | 689 5 69 |
| 4 5 38 | 6 89 39 | 7 12 12 |
+-----------------------+-------------------+------------------------+
| 69(13) 69(3) 5 | 7 2 49 | 9(46) 49(16) 8 |
| 169 7 (46) | 3 5 8 | 2 149(6) 149(6) |
| 2 8 (49) | (49) 1 6 | 3 7 5 |
+-----------------------+-------------------+------------------------+
| 69 1 7 | (24) 3 5 | 69(4) 8 2469 |
| 5 69(3) 6(23) | 8 (79) 479 | 1 2469 2469 |
| 8 4 9(2) | (29) 6 1 | 5 3 7 |
+-----------------------+-------------------+------------------------+
+------------------+-----------+-----------------------+
| 7 6(9) 1 | 5 8 2 | 46(9) 469 3 |
| 36(9) 2 36 | 1 4 7 | 8 5 69 |
| 4 5 8 | 6 9 3 | 7 12 12 |
+------------------+-----------+-----------------------+
| 136 369 5 | 7 2 49 | 46(9) 1469 8 |
| 16(9) 7 46 | 3 5 8 | 2 146(9) 146(9) |
| 2 8 49 | 49 1 6 | 3 7 5 |
+------------------+-----------+-----------------------+
| 6-9 1 7 | 24 3 5 | 46(9) 8 2469 |
| 5 369 236 | 8 7 49 | 1 2469 2469 |
| 8 4 29 | 29 6 1 | 5 3 7 |
+------------------+-----------+-----------------------+
+---------------------+-------------------+--------------------+
| 679 (569) 1 | 7(5) 789 2 | 468(9) 469 3 |
| 3679 2 (368) | 1 4 379 | 68(9) 5 (69) |
| 4 359 (38) | 6 89 359 | 7 12 12 |
+---------------------+-------------------+--------------------+
| 1369 369 5 | 47 2 47(9) | 46(9) 1469 8 |
| 169 7 46 | 3 5 8 | 2 1469 1469 |
| 2 8 4(9) | 4(9) 1 6 | 3 7 5 |
+---------------------+-------------------+--------------------+
| 6(9) 1 7 | 4(25) 3 459 | 46(9) 8 2469 |
| 5 36(9) 6-3(2) | 8 79 479 | 1 2469 2469 |
| 8 4 (29) | 9(2) 6 1 | 5 3 7 |
+---------------------+-------------------+--------------------+
9r4c7 - r4c6 = r6c4 - r6c3 = 9r9c3 ---------
|| \
|| 9r9c3 --------------------------------
|| || \
|| 9r8c2 - 9r1c2 \
|| || || \
9r7c7 - 9r7c1 5r1c2 - r1c4 = (5-2)r7c4 = 2r9c4 - 2r9c3 = 2r8c3 - 3r8c3
|| || /
|| 6r1c2 - 6r2c3 = (NP: <38>r23c3) ----------------
|| /
9r12c7 - (9=6)r2c9 ---
+------------------+-------------------+-------------------+
| 679 569 1 | 57 789 2 | 468(9) 469 3 |
| (679) 2 38 | 1 4 39(7) | 68(9) 5 (69) |
| 4 59 38 | 6 89 359 | 7 2 1 |
+------------------+-------------------+-------------------+
| 3 69 5 | 47 2 4(79) | 46 1 8 |
| 1 7 46 | 3 5 8 | 2 469 469 |
| 2 8 49 | 4(9) 1 6 | 3 7 5 |
+------------------+-------------------+-------------------+
| 6(9) 1 7 | 245 3 459 | 46(9) 8 2469 |
| 5 3 26 | 8 (79) 49(7) | 1 469 2469 |
| 8 4 2(9) | 2-9 6 1 | 5 3 7 |
+------------------+-------------------+-------------------+
9r2c1 ---------------------------
|| \
6r2c1 - (6=9)r2c9 - r12c7 = 9r7c7 - 9r7c1 = r9c3 - 9r9c4
|| /
7r2c1 - 7r2c6 /
|| /
7r4c6 - 9r4c6 = 9r6c4 ----------------
|| /
7r8c6 - (7=9)r8c5 ------------------
dobrichev wrote:Enjoy!
Singles: 1r4c2, 5r5c5
Hidden Pair: <12>r3c89 => -9r3c89
X-Wing: <9>r69\c34 => -9r2358c3, -9r147c4
blue wrote:I see I missed some easier 2-step solutions. (2 steps after the 9's X-Wing)
There are some where at least one of the steps, isn't as complicated as the two I used above.
The best ones, seemed to go like: (a complex network => -9r7c1 => +6r7c1), (kraken r1c2 => ??)
+-------------------+-----------------+------------------+
| 679 9(56) 1 | -7(5) 789 2 | 4689 469 3 |
| 3679 2 368 | 1 4 379 | 689 5 69 |
| 4 359 38 | 6 89 359 | 7 12 12 |
+-------------------+-----------------+------------------+
| 1369 39(6) 5 | (47) 2 479 | 469 1469 8 |
| 169 7 (46) | 3 5 8 | 2 1469 1469 |
| 2 8 (49) | (49) 1 6 | 3 7 5 |
+-------------------+-----------------+------------------+
| (69) 1 7 | 245 3 459 | 469 8 2469 |
| 5 39(6) 236 | 8 79 479 | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+-------------------+-----------------+------------------+
+---------------------+-----------------+--------------------+
| 67(9) 6(9) 1 | 5 789 2 | 468(9) 469 3 |
| 367(9) 2 36(8) | 1 4 379 | 6(89) 5 69 |
| 4 5 (38) | 6 89 (39) | 7 12 12 |
+---------------------+-----------------+--------------------+
| 1369 369 5 | 7 2 4(9) | 46(9) 1469 8 |
| 169 7 46 | 3 5 8 | 2 1469 1469 |
| 2 8 49 | 4(9) 1 6 | 3 7 5 |
+---------------------+-----------------+--------------------+
| 6-9 1 7 | 24 3 5 | 46(9) 8 2469 |
| 5 369 236 | 8 79 479 | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+---------------------+-----------------+--------------------+
+-------------------+-----------------+------------------+
| 79 (569) 1 | (57) 789 2 | 4689 469 3 |
| 379 2 38(6) | 1 4 379 | 689 5 69 |
| 4 359 38 | 6 89 359 | 7 12 12 |
+-------------------+-----------------+------------------+
| 139 369 5 | (47) 2 479 | 469 1469 8 |
| 19 7 (46) | 3 5 8 | 2 1469 1469 |
| 2 8 9(4) | -4(9) 1 6 | 3 7 5 |
+-------------------+-----------------+------------------+
| 6 1 7 | 245 3 459 | 49 8 249 |
| 5 3(9) 23 | 8 79 479 | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+-------------------+-----------------+------------------+
+------------------+-----------------+------------------+
| 79 (69) 1 | 5 789 2 | 4689 469 3 |
| 379 2 38(6) | 1 4 379 | 689 5 69 |
| 4 5 38 | 6 89 39 | 7 12 12 |
+------------------+-----------------+------------------+
| 139 369 5 | 7 2 49 | 469 1469 8 |
| 19 7 (46) | 3 5 8 | 2 1469 1469 |
| 2 8 -9(4) | -4(9) 1 6 | 3 7 5 |
+------------------+-----------------+------------------+
| 6 1 7 | 24 3 5 | 49 8 249 |
| 5 3(9) 23 | 8 79 479 | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+------------------+-----------------+------------------+
daj95376 wrote:After the X-Wing, there were three, 4-value template combinations that cracked the puzzle with subsequent Basics. The second combination is the most interesting because it so closely matches JC's latest post on r6c4=9=r9c3. Maybe someone who uses Xsudo can determine why this 4-value combination produces the listed results.
+-----------------------+-------------------+------------------+
| 6(79) 56(9) 1 | 57 789 2 | 4689 469 3 |
| 6(379) 2 68(3) | 1 4 9(37) | 689 5 69 |
| 4 35(9) 38 | 6 89 359 | 7 12 12 |
+-----------------------+-------------------+------------------+
| 1369 369 5 | 47 2 4(79) | 469 1469 8 |
| 169 7 46 | 3 5 8 | 2 1469 1469 |
| 2 8 49 | 4(9) 1 6 | 3 7 5 |
+-----------------------+-------------------+------------------+
| 69 1 7 | 245 3 459 | 469 8 2469 |
| 5 6-9(3) 26(3) | 8 (79) 49(7) | 1 2469 2469 |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+-----------------------+-------------------+------------------+
8 Truths = {3R28 9R9 7C6 8N5 7B1 9B15}
11 Links = {79r8 3c3 9c24 12n1 8n2 24n6 9b7}
1 Elimination --> r8c2<>9
+--------------------+-------------------+-----------------------+
| 679 569 1 | 57 789 2 | 4689 469 3 |
| 367(9) 2 36(8) | 1 4 (379) | 6(89) 5 6(9) |
| 4 359 (38) | 6 89 59(3) | 7 12 12 |
+--------------------+-------------------+-----------------------+
| 1369 369 5 | 47 2 4(79) | 469 1469 8 |
| 16(9) 7 46 | 3 5 8 | 2 146(9) 146(9) |
| 2 8 49 | 4(9) 1 6 | 3 7 5 |
+--------------------+-------------------+-----------------------+
| 6-9 1 7 | 245 3 459 | 46(9) 8 246(9) |
| 5 369 236 | 8 (79) 49(7) | 1 246(9) 246(9) |
| 8 4 2(9) | 2(9) 6 1 | 5 3 7 |
+--------------------+-------------------+-----------------------+
10 Truths = {8R2 9R259 37C6 3N3 8N5 9B59}
13 Links = {3r3 7r8 9r78 8c3 9c1489 24n6 2n7 9b7}
1 Elimination --> r7c1<>9
blue wrote:Each one has (also) a represention as network-based elimination.
If you're interested, I'll work up a diagram for each.
Value: 1 2 3 4 5 6 7 8 9
Templates: 3 3 4 10 2 20 3 2 44
_ _ _ __ _ __ _ _ __
Used: 4 3 2 16