37 givens, no empty triplet

Post puzzles for others to solve here.

37 givens, no empty triplet

Postby dobrichev » Thu Apr 16, 2015 6:28 pm

Code: Select all
..1 ..2 ..3
.2. .4. .5.
4.. 6.. 7..

..5 .2. ..8
.7. 3.8 2..
28. .16 375

.17 .3. .8.
5.. 8.. 1..
84. .61 537

Enjoy!
dobrichev
2016 Supporter
 
Posts: 1866
Joined: 24 May 2010

Re: 37 givens, no empty triplet

Postby Leren » Thu Apr 16, 2015 9:22 pm

Code: Select all
 *--------------------------------------------------------------*
 | 679   569   1      | 579   789   2      | 4689  469   3      |
 | 3679  2     3689   | 1     4     379    | 689   5     69     |
>| 4     359   389    | 6     89    359    | 7     12   T1-2    |<
 |--------------------+--------------------+--------------------|
 | 1369  369   5      | 479   2     479    | 469  B1469  8      |
 | 169   7     469    | 3     5     8      | 2    B1469  1469   |
>| 2     8     49     | 49    1     6      | 3     7     5      |<
 |--------------------+--------------------+--------------------|
 | 69    1     7      | 2459  3     459    | 469   8     2469   |
>| 5     369   2369   | 8     79    479    | 1     2469 T469-2  |<
 | 8     4     29     | 29    6     1      | 5     3     7      |
 *--------------------------------------------------------------*

Would you believe my solver detected an Exocet : r4c8 r5c8 r3c9 r8c9 1469. Removing the non-base digit 2 from both target cells solves the puzzle in 1 move !

The problem is that the cross lines aren't much use. Proving digit 1 is obvious, digits 489 require a full digit expansion.

At least this shows that if you can determine which of the two 2's in Row 7 is True you can solve the puzzle in 1 move.

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: 37 givens, no empty triplet

Postby DonM » Fri Apr 17, 2015 12:04 am

Would you believe my solver detected an Exocet : r4c8 r5c8 r3c9 r8c9 1469. Removing the non-base digit 2 from both target cells solves the puzzle in 1 move !

The problem is that the cross lines aren't much use. Proving digit 1 is obvious, digits 489 require a full digit expansion.

At least this shows that if you can determine which of the two 2's in Row 7 is True you can solve the puzzle in 1 move.

Leren


I'm not following. There seems to be a conflict between the first and last sentences.
Edit: Well, on re-read, I guess I get it, though it gave the impression that the Exocet solved it in 1 move.
Last edited by DonM on Fri Apr 17, 2015 12:27 am, edited 1 time in total.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: 37 givens, no empty triplet

Postby DonM » Fri Apr 17, 2015 12:37 am

Post deleted -solution had an error.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: 37 givens, no empty triplet

Postby Leren » Fri Apr 17, 2015 9:24 am

DonM wrote : Well, on re-read, I guess I get it, though it gave the impression that the Exocet solved it in 1 move.

The Exocet did solve the puzzle in 1 move. However the point I was making was how the Exocet was detected. It required full digit expansions on 3 digits, so there is a lot of work going on underneath the "single move".

There are endless debates about how far you should go in proving that if a digit is in the Base cells it must occupy a Target cell. The wording of Champagne's original definition seems to allow for any method whatsoever, however the more work

involved in proving the Exocet, the less desirable it is. In fact I have an option to turn full digit expansions off but I was just playing around with the option on when the Exocet turned up (to my surprise).

I just thought it was a cool solution, I was "enjoying" the puzzle like dobrichev suggested. The alternative solutions I was getting involved a lot of boring chains.

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: 37 givens, no empty triplet

Postby JC Van Hay » Fri Apr 17, 2015 9:39 am

HP(12)r3c89
Analysis of the puzzle from the XWing(9R69) suggests the following solution as it implies +5r1c4, +7r1c1, ...
Code: Select all
+-------------------+-----------------+------------------+
| 679   9(56)  1    | -7(5)  789  2   | 4689  469   3    |
| 3679  2      368  | 1      4    379 | 689   5     69   |
| 4     359    38   | 6      89   359 | 7     12    12   |
+-------------------+-----------------+------------------+
| 1369  39(6)  5    | (47)   2    479 | 469   1469  8    |
| 169   7      (46) | 3      5    8   | 2     1469  1469 |
| 2     8      (49) | (49)   1    6   | 3     7     5    |
+-------------------+-----------------+------------------+
| (69)  1      7    | 245    3    459 | 469   8     2469 |
| 5     39(6)  236  | 8      79   479 | 1     2469  2469 |
| 8     4      2(9) | 2(9)   6    1   | 5     3     7    |
+-------------------+-----------------+------------------+
5r1c4=(5-6)r1c2=*pseudo-WWing[(9=6)r7c1 - 6r8c2=*6r4c2 - (6=49)r56c3] - 9r9c3=NT(947)r964c4 :=> -7r1c4; 4 Singles
Code: Select all
+-----------------------+-------------------+------------------------+
| 679      69     1     | 5     9-7(8)  2   | 69(48)  469     3      |
| 3679     2      368   | 1     4       379 | 689     5       69     |
| 4        5      38    | 6     89      39  | 7       12      12     |
+-----------------------+-------------------+------------------------+
| 69(13)   69(3)  5     | 7     2       49  | 9(46)   49(16)  8      |
| 169      7      (46)  | 3     5       8   | 2       149(6)  149(6) |
| 2        8      (49)  | (49)  1       6   | 3       7       5      |
+-----------------------+-------------------+------------------------+
| 69       1      7     | (24)  3       5   | 69(4)   8       2469   |
| 5        69(3)  6(23) | 8     (79)    479 | 1       2469    2469   |
| 8        4      9(2)  | (29)  6       1   | 5       3       7      |
+-----------------------+-------------------+------------------------+
4r4c7=*pseudo-Wing[8r1c5=(8-4)r1c7=*4r7c7 - (4=297)r79c4.r8c5]
|
6r4c7=*[(4=6)r5c3 - 6r5c89=*(6-1)r4c8=(1-3)r4c1=3r4c2 - 3r8c2=(3-2)r8c3=2r9c3 -(2=94)r97c4] - (4=9)r6c3 - 9r6c4=9r9c4 -(9=7)r8c5 :=> -7r1c5; 8 Singles
Code: Select all
+------------------+-----------+-----------------------+
| 7      6(9)  1   | 5   8  2  | 46(9)  469     3      |
| 36(9)  2     36  | 1   4  7  | 8      5       69     |
| 4      5     8   | 6   9  3  | 7      12      12     |
+------------------+-----------+-----------------------+
| 136    369   5   | 7   2  49 | 46(9)  1469    8      |
| 16(9)  7     46  | 3   5  8  | 2      146(9)  146(9) |
| 2      8     49  | 49  1  6  | 3      7       5      |
+------------------+-----------+-----------------------+
| 6-9    1     7   | 24  3  5  | 46(9)  8       2469   |
| 5      369   236 | 8   7  49 | 1      2469    2469   |
| 8      4     29  | 29  6  1  | 5      3       7      |
+------------------+-----------+-----------------------+
SF(9R5C7B1) - (9=6)r7c1; XYWing(-369)r18c2.r3c2 - (3=2)r8c3 - ... - 2r8c89=2r7c9; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: 37 givens, no empty triplet

Postby blue » Fri Apr 17, 2015 11:23 am

A 2-stepper, if you don't count the X-Wing. Computer assisted.

1) "Basics"

Singles: 1r4c2, 5r5c5
Hidden Pair: <12>r3c89 => -9r3c89
X-Wing: <9>r69\c34 => -9r2358c3, -9r147c4

2) Triple-Kraken network => -3r8c3

Code: Select all
+---------------------+-------------------+--------------------+
| 679   (569)  1      | 7(5)   789  2     | 468(9)  469   3    |
| 3679  2      (368)  | 1      4    379   | 68(9)   5     (69) |
| 4     359    (38)   | 6      89   359   | 7       12    12   |
+---------------------+-------------------+--------------------+
| 1369  369    5      | 47     2    47(9) | 46(9)   1469  8    |
| 169   7      46     | 3      5    8     | 2       1469  1469 |
| 2     8      4(9)   | 4(9)   1    6     | 3       7     5    |
+---------------------+-------------------+--------------------+
| 6(9)  1      7      | 4(25)  3    459   | 46(9)   8     2469 |
| 5     36(9)  6-3(2) | 8      79   479   | 1       2469  2469 |
| 8     4      (29)   | 9(2)   6    1     | 5       3     7    |
+---------------------+-------------------+--------------------+

 9r4c7 - r4c6 = r6c4 - r6c3 = 9r9c3 ---------
   ||                                         \
   ||    9r9c3 --------------------------------
   ||      ||                                   \
   ||    9r8c2 - 9r1c2                           \
   ||      ||      ||                             \
 9r7c7 - 9r7c1   5r1c2 - r1c4 = (5-2)r7c4 = 2r9c4 - 2r9c3 = 2r8c3 - 3r8c3
   ||              ||                                             /
   ||            6r1c2 - 6r2c3 = (NP: <38>r23c3) ----------------
   ||                  /
9r12c7 - (9=6)r2c9 ---

3) Basics

Singles: 3r8c2, 3r4c1, 1r5c1, 1r4c8, 2r3c8, 1r3c9
Hidden Pair: <38>r23c3 => -6r2c3
Line-box: 9r5c89 => -9r4c7

4) Dual-Kraken network => -9r9c4; stte

Code: Select all
+------------------+-------------------+-------------------+
| 679    569  1    | 57    789   2     | 468(9)  469  3    |
| (679)  2    38   | 1     4     39(7) | 68(9)   5    (69) |
| 4      59   38   | 6     89    359   | 7       2    1    |
+------------------+-------------------+-------------------+
| 3      69   5    | 47    2     4(79) | 46      1    8    |
| 1      7    46   | 3     5     8     | 2       469  469  |
| 2      8    49   | 4(9)  1     6     | 3       7    5    |
+------------------+-------------------+-------------------+
| 6(9)   1    7    | 245   3     459   | 46(9)   8    2469 |
| 5      3    26   | 8     (79)  49(7) | 1       469  2469 |
| 8      4    2(9) | 2-9   6     1     | 5       3    7    |
+------------------+-------------------+-------------------+

9r2c1 ---------------------------
  ||                              \
6r2c1 - (6=9)r2c9 - r12c7 = 9r7c7 - 9r7c1 = r9c3 - 9r9c4
  ||                                             /
7r2c1 - 7r2c6                                   /
          ||                                   /
        7r4c6 - 9r4c6 = 9r6c4 ----------------
          ||                                 /
        7r8c6 - (7=9)r8c5 ------------------
blue
 
Posts: 1054
Joined: 11 March 2013

Re: 37 givens, no empty triplet

Postby bat999 » Fri Apr 17, 2015 3:52 pm

dobrichev wrote:Enjoy!

Singles: 1r4c2, 5r5c5
Hidden Pair: <12>r3c89 => -9r3c89
X-Wing: <9>r69\c34 => -9r2358c3, -9r147c4


I found those basics too, thought the X-wing was a killer, but no. :cry:
Had to use "a lot of boring chains" then finished off with Empty Rectangle(s). 8-)
Thanks dobrichev. :D
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: 37 givens, no empty triplet

Postby blue » Fri Apr 17, 2015 7:54 pm

I see I missed some easier 2-step solutions. (2 steps after the 9's X-Wing)
There are some where at least one of the steps, isn't as complicated as the two I used above.

The best ones, seemed to go like: (a complex network => -9r7c1 => +6r7c1), (kraken r1c2 => ??)
blue
 
Posts: 1054
Joined: 11 March 2013

Re: 37 givens, no empty triplet

Postby JC Van Hay » Sat Apr 18, 2015 6:57 am

blue wrote:I see I missed some easier 2-step solutions. (2 steps after the 9's X-Wing)
There are some where at least one of the steps, isn't as complicated as the two I used above.

The best ones, seemed to go like: (a complex network => -9r7c1 => +6r7c1), (kraken r1c2 => ??)

The analysis of the puzzle from the XWing(9R69) showed r6c3=9=r9c4 -> contradiction via Skyscraper(9C27)-(6=9)r7c1 while r6c4=9=r9c3 -> solution stte.
Not only the analysis implied +5r1c4, +7r1c1 but also +6r7c1. This last assignment effectively soften the network proving r6c4=9=r9c3.
For example, like these 3 krakens using 8, 7, 7 constraints respectively [instead of 2 krakens using 11 and 7 constraints respectively if one first wants to prove +6r7c1]
Code: Select all
+-------------------+-----------------+------------------+
| 679   9(56)  1    | -7(5)  789  2   | 4689  469   3    |
| 3679  2      368  | 1      4    379 | 689   5     69   |
| 4     359    38   | 6      89   359 | 7     12    12   |
+-------------------+-----------------+------------------+
| 1369  39(6)  5    | (47)   2    479 | 469   1469  8    |
| 169   7      (46) | 3      5    8   | 2     1469  1469 |
| 2     8      (49) | (49)   1    6   | 3     7     5    |
+-------------------+-----------------+------------------+
| (69)  1      7    | 245    3    459 | 469   8     2469 |
| 5     39(6)  236  | 8      79   479 | 1     2469  2469 |
| 8     4      2(9) | 2(9)   6    1   | 5     3     7    |
+-------------------+-----------------+------------------+
5r1c4=(5-6)r1c2=*pseudo-WWing[(9=6)r7c1 - 6r8c2=*6r4c2 - (6=49)r56c3] - 9r9c3=NT(947)r964c4 :=> -7r1c4, +5r1c4; 3 more Singles
Code: Select all
+---------------------+-----------------+--------------------+
| 67(9)   6(9)  1     | 5     789  2    | 468(9)  469   3    |
| 367(9)  2     36(8) | 1     4    379  | 6(89)   5     69   |
| 4       5     (38)  | 6     89   (39) | 7       12    12   |
+---------------------+-----------------+--------------------+
| 1369    369   5     | 7     2    4(9) | 46(9)   1469  8    |
| 169     7     46    | 3     5    8    | 2       1469  1469 |
| 2       8     49    | 4(9)  1    6    | 3       7     5    |
+---------------------+-----------------+--------------------+
| 6-9     1     7     | 24    3    5    | 46(9)   8     2469 |
| 5       369   236   | 8     79   479  | 1       2469  2469 |
| 8       4     2(9)  | 2(9)  6    1    | 5       3     7    |
+---------------------+-----------------+--------------------+
SF(9)[r9c3=r9c4 - r6c4=9r4c6 - r4c7=r7c7]=*[9r12c1=9r1c2 - 9r1c7=*(9-8)r2c7=8r2c3 - (8=39)r3c36 -9r4c6=9r6c4 - 9r9c4=9r9c3] :=> -9r7c1, +6r7c1
Code: Select all
+-------------------+-----------------+------------------+
| 79   (569)  1     | (57)   789  2   | 4689  469   3    |
| 379  2      38(6) | 1      4    379 | 689   5     69   |
| 4    359    38    | 6      89   359 | 7     12    12   |
+-------------------+-----------------+------------------+
| 139  369    5     | (47)   2    479 | 469   1469  8    |
| 19   7      (46)  | 3      5    8   | 2     1469  1469 |
| 2    8      9(4)  | -4(9)  1    6   | 3     7     5    |
+-------------------+-----------------+------------------+
| 6    1      7     | 245    3    459 | 49    8     249  |
| 5    3(9)   23    | 8      79   479 | 1     2469  2469 |
| 8    4      2(9)  | 2(9)   6    1   | 5     3     7    |
+-------------------+-----------------+------------------+
(4=57)r41c4 - 5r1c2=*[4r6c3=(4-6)r5c3=6r2c3 - (6=*9)r1c2 - 9r8c2=9r9c3 - 9r9c3=9r6c4] :=> -4r6c4, +9r6c4; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: 37 givens, no empty triplet

Postby daj95376 » Sat Apr 18, 2015 4:53 pm

My solver returned several steps (including chains) that weren't outlandish. In debug mode, I was able to find two SINs to crack the puzzle after the X-Wing. However, the first SIN relied heavily on remembering secondary eliminations on <9> in order to derive -3r8c3. I didn't check the alternate SINs found. Finally, I ran my multi-value template analyzer. After the X-Wing, there were three, 4-value template combinations that cracked the puzzle with subsequent Basics. The second combination is the most interesting because it so closely matches JC's latest post on r6c4=9=r9c3. Maybe someone who uses Xsudo can determine why this 4-value combination produces the listed results.

<3679>: Show
Code: Select all
 <3679>        accepted = 8 template combinations

 <3679>   <>3  r2c1,r34c2,r8c3
 <3679>   <>6  r1c178,r2c13,r4c12,r5c189,r7c79,r8c23
 <3679>   <>9  r457c1,r138c2,r6c3,r9c4,r1c5,r24c6,r4c7,r48c8

 <3679>   <>1  r4c1
 <3679>   <>2  r9c3
 <3679>   <>4  r5c3,r6c4
 <3679>   <>5  r1c2

 <3679>        r1247c1,r148c2,r59c3,r6c4,r8c5,r2c6,r2c9   locked for candidates

<3789>: Show
Code: Select all
 <3789>        accepted = 20 template combinations

 <3789>   <>9  r7c1,r8c2,r6c3,r9c4,r24c6

 <3789>   <>2  r9c3
 <3789>   <>4  r6c4

 <3789>        r39c3,r6c4,r138c5,r2c6   locked for candidates

<4679>: Show
Code: Select all
 <4679>        accepted = 5 template combinations

 <4679>   <>4  r7c6,r48c8
 <4679>   <>6  r1c178,r2c137,r4c2,r5c9,r7c9,r8c29
 <4679>   <>7  r1c5,r8c6
 <4679>   <>9  r1c27,r2c69,r3c6,r4c178,r5c1,r7c9,r8c25

 <4679>   <>5  r1c2

 <4679>        r1c128,r2c9,r4c467,r5c3,r6c34,r7c17,r8c56   locked for candidates

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: 37 givens, no empty triplet

Postby JC Van Hay » Sat Apr 18, 2015 5:46 pm

Oops ... mixing of solutions in my last post : there, the third step is of application only if +6r7c1 is first proved. But, because of the first step the AIC between the square brackets is only necessary.
Code: Select all
+------------------+-----------------+------------------+
| 79   (69)  1     | 5      789  2   | 4689  469   3    |
| 379  2     38(6) | 1      4    379 | 689   5     69   |
| 4    5     38    | 6      89   39  | 7     12    12   |
+------------------+-----------------+------------------+
| 139  369   5     | 7      2    49  | 469   1469  8    |
| 19   7     (46)  | 3      5    8   | 2     1469  1469 |
| 2    8     -9(4) | -4(9)  1    6   | 3     7     5    |
+------------------+-----------------+------------------+
| 6    1     7     | 24     3    5   | 49    8     249  |
| 5    3(9)  23    | 8      79   479 | 1     2469  2469 |
| 8    4     2(9)  | 2(9)   6    1   | 5     3     7    |
+------------------+-----------------+------------------+
[4r6c3=(4-6)r5c3=6r2c3 - (6=9)r1c2 - 9r8c2=9r9c3 - 9r9c3=9r6c4] :=> +9r6c4; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: 37 givens, no empty triplet

Postby blue » Tue Apr 21, 2015 6:22 pm

daj95376 wrote:After the X-Wing, there were three, 4-value template combinations that cracked the puzzle with subsequent Basics. The second combination is the most interesting because it so closely matches JC's latest post on r6c4=9=r9c3. Maybe someone who uses Xsudo can determine why this 4-value combination produces the listed results.

These combinations eliminate the "other two" 9's in b7, and solve the X-Wing.
Than as JC says, that cracks the puzzle.

Code: Select all
+-----------------------+-------------------+------------------+
| 6(79)   56(9)   1     | 57    789   2     | 4689  469   3    |
| 6(379)  2       68(3) | 1     4     9(37) | 689   5     69   |
| 4       35(9)   38    | 6     89    359   | 7     12    12   |
+-----------------------+-------------------+------------------+
| 1369    369     5     | 47    2     4(79) | 469   1469  8    |
| 169     7       46    | 3     5     8     | 2     1469  1469 |
| 2       8       49    | 4(9)  1     6     | 3     7     5    |
+-----------------------+-------------------+------------------+
| 69      1       7     | 245   3     459   | 469   8     2469 |
| 5       6-9(3)  26(3) | 8     (79)  49(7) | 1     2469  2469 |
| 8       4       2(9)  | 2(9)  6     1     | 5     3     7    |
+-----------------------+-------------------+------------------+

8 Truths = {3R28 9R9 7C6 8N5 7B1 9B15}
11 Links = {79r8 3c3 9c24 12n1 8n2 24n6 9b7}
1 Elimination --> r8c2<>9

Code: Select all
+--------------------+-------------------+-----------------------+
| 679     569  1     | 57    789   2     | 4689   469     3      |
| 367(9)  2    36(8) | 1     4     (379) | 6(89)  5       6(9)   |
| 4       359  (38)  | 6     89    59(3) | 7      12      12     |
+--------------------+-------------------+-----------------------+
| 1369    369  5     | 47    2     4(79) | 469    1469    8      |
| 16(9)   7    46    | 3     5     8     | 2      146(9)  146(9) |
| 2       8    49    | 4(9)  1     6     | 3      7       5      |
+--------------------+-------------------+-----------------------+
| 6-9     1    7     | 245   3     459   | 46(9)  8       246(9) |
| 5       369  236   | 8     (79)  49(7) | 1      246(9)  246(9) |
| 8       4    2(9)  | 2(9)  6     1     | 5      3       7      |
+--------------------+-------------------+-----------------------+

10 Truths = {8R2 9R259 37C6 3N3 8N5 9B59}
13 Links = {3r3 7r8 9r78 8c3 9c1489 24n6 2n7 9b7}
1 Elimination --> r7c1<>9

They are built using "truths" that are either for "house digits" <3789>, or for cells with (only) candidates from <3789>.

Each one has (also) a represention as network-based elimination.
If you're interested, I'll work up a diagram for each.
blue
 
Posts: 1054
Joined: 11 March 2013

Re: 37 givens, no empty triplet

Postby daj95376 » Tue Apr 21, 2015 7:50 pm

blue wrote:Each one has (also) a represention as network-based elimination.
If you're interested, I'll work up a diagram for each.

Thanks for checking using Xsudo. It's nice to know that its approach performs eliminations in [b7].

I expanded my template solver's output and learned:

*) Every template for <3>, <7>, and <8> can be found in some acceptable combination for <378>. No casualties!

*) When the acceptable <378> combinations are combined with <9>, less than half of the <9> templates were acceptable.

This explains why only eliminations in <9>, or eliminations other than <3789> occur.

Code: Select all
 Value:     1 2 3  4 5  6 7 8  9

 Templates: 3 3 4 10 2 20 3 2 44
            _ _ _ __ _ __ _ _ __
 Used:          4         3 2 16

Specific: Show
Code: Select all
........3.....3.....3......3...........3...........3......3.....3..............3.
........3.....3....3.......3...........3...........3......3......3.............3.
........3..3...........3...3...........3...........3......3.....3..............3.
........33.............3....3..........3...........3......3......3.............3.

....7....7..............7.....7......7..............7...7...........7...........7
...7.....7..............7.......7....7..............7...7..........7............7
7.............7.........7.....7......7..............7...7..........7............7

......8....8..........8............8.....8....8..............8....8.....8........
....8..........8....8..............8.....8....8..............8....8.....8........

.......9.9............9.....9...............9...9...........9.......9.....9......
......9..9............9.....9...............9...9..........9..........9...9......
......9..9............9.....9..............9....9.............9.....9.....9......
......9..9............9.....9..............9....9..........9...........9..9......
....9............9.9..............9.9...........9...........9.......9.....9......
....9............9.9.............9..9...........9..........9..........9...9......
....9..........9...9..............9.9...........9.............9.....9.....9......
....9..........9...9..............9.9...........9..........9...........9..9......
.9...............9.....9..........9.9...........9...........9......9......9......
.9...............9....9...........9.9...........9...........9.......9.....9......
.9...............9....9..........9..9...........9..........9..........9...9......
.9...............9....9....9...............9....9...........9.......9.....9......
.9.............9.......9..........9.9...........9.............9....9......9......
9................9.....9....9..............9....9...........9......9......9......
9................9....9.....9..............9....9...........9.......9.....9......
9..............9.......9....9..............9....9.............9....9......9......


79..8...33....78.9..8.937..93.7....8.7.3.8.9..8.9..37...7.3.98...3879...8.9....37
79..8...33....78.9..8.937...3.7..9.897.3.8....8.9..37...7.39.8...387..9.8.9....37
79..8...33....78.9..8.937...3.7...9897.3.8....8.9..37...7.3.98...3879...8.9....37
79..8...3..3..78.9..8.937..3..7..9.897.3.8....8.9..37...7.39.8..3.87..9.8.9....37
79..8...3..3..78.9..8.937..3..7...9897.3.8....8.9..37...7.3.98..3.879...8.9....37
7...8.9.39.3..78....8.937..39.7....8.7.3.8.9..8.9..37...7.39.8..3.87...98.9....37
7...8.9.39.3..78....8.937..39.7....8.7.3.8.9..8.9..37...7.3..89.3.879...8.9....37
7...8.9.39.3..78....8.937..39.7....8.7.3.8..9.8.9..37...7.39.8..3.87..9.8.9....37
7...8..939.3..78....8.937..39.7....8.7.3.8..9.8.9..37...7.3.98..3.879...8.9....37
9..78...37....38.9.38.9.7..39...7..8.7.3.8.9..8.9..37...7.3.98...3879...8.9....37
.9.78...37....38.9.38.9.7..3....79.897.3.8....8.9..37...7.39.8...387..9.8.9....37
.9.78...37....38.9.38.9.7..3....7.9897.3.8....8.9..37...7.3.98...3879...8.9....37
...79.8.37.8..39...93.8.7..3....7.9897.3.8....8.9..37...7.39.8..3.87...98.9....37
...79.8.37.8..39...93.8.7..3....7.9897.3.8....8.9..37...7.3..89.3.879...8.9....37
...79.8.37.8..3..9.93.8.7..3....79.897.3.8....8.9..37...7.39.8..3.87..9.8.9....37
...79.8.37.8..3..9.93.8.7..3....7.9897.3.8....8.9..37...7.3.98..3.879...8.9....37
9...7.8.37.8..39....3.897..39.7....8.7.3.8.9..8.9..37...7.3..89.3.897...8.9....37
9...7.8.37.8..3..9..3.897..39.7....8.7.3.8.9..8.9..37...7.3.98..3.897...8.9....37
.9..7.8.37.8..39....3.897..3..7...9897.3.8....8.9..37...7.3..89.3.897...8.9....37
.9..7.8.37.8..3..9..3.897..3..7...9897.3.8....8.9..37...7.3.98..3.897...8.9....37


 <3789>        accepted = 20 template combinations

 <3789>   <>9  r7c1,r8c2,r6c3,r9c4,r24c6

 <3789>   <>2  r9c3
 <3789>   <>4  r6c4

 <3789>        r39c3,r6c4,r138c5,r2c6   locked for candidates

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: 37 givens, no empty triplet

Postby pjb » Tue Apr 21, 2015 11:49 pm

A further observation, using extended coloring, placing r9c3=9 leads to resolution of all cells.

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles