.
SudoRules finds a different pattern, with different guardians.
All that follows (except forum formatting) is 100% SudoRules output, after automatic generation of rules for the (630-38) patterns.
Impossible patterns are looked for after W2 and S3.
Patterns with fewer clues are looked for before patterns with more clues, but all after Tridagon.
Chain rules based on them are used at their place in the rules hierarchy, based on their length.
Notation: a pattern in eleven's 630 list is mentioned as EL<xxx>c<yyy>, where <xxx> is the number of cells in the pattern and <yyy> is its place in the original <xxx> list.
- Code: Select all
hidden-pairs-in-a-row: r5{n5 n6}{c1 c3} ==> r5c3≠9, r5c3≠4, r5c3≠2, r5c1≠9, r5c1≠7, r5c1≠4, r5c1≠2
singles ==> r6c1=7, r5c5=7, r3c6=7, r1c7=7,r3c7=5, r1c5=5, r6c7≠1
+----------------------+----------------------+----------------------+
! 12489 249 3 ! 249 5 6 ! 7 128 149 !
! 249 5 7 ! 1 8 249 ! 2469 23 3469 !
! 12489 6 2489 ! 3 249 7 ! 5 128 149 !
+----------------------+----------------------+----------------------+
! 249 8 1 ! 6 249 3 ! 249 7 5 !
! 56 249 56 ! 249 7 8 ! 1249 123 1349 !
! 7 3 249 ! 5 1249 1249 ! 249 6 8 !
+----------------------+----------------------+----------------------+
! 35689 7 5689 ! 89 169 159 ! 136 4 2 !
! 2469 249 2469 ! 7 3 1249 ! 8 5 16 !
! 234568 1 24568 ! 248 246 245 ! 36 9 7 !
+----------------------+----------------------+----------------------+
OR2-anti-tridagon[12] for digits 2, 4 and 9 in blocks:
b1, with cells: r1c2, r2c1, r3c3
b2, with cells: r1c4, r2c6, r3c5
b4, with cells: r5c2, r4c1, r6c3
b5, with cells: r5c4, r4c5, r6c6
with 2 guardians: n8r3c3 n1r6c6
OR2-EL13c259 relation for digits: 2, 4 and 9
in cells (marked #): (r3c5 r1c2 r1c4 r2c7 r2c1 r2c6 r5c2 r4c7 r4c1 r4c5 r6c7 r6c3 r6c5)
with 2 guardians (in cells marked @) : n6r2c7 n1r6c5- Code: Select all
+----------------------+----------------------+----------------------+
! 12489 249# 3 ! 249# 5 6 ! 7 128 149 !
! 249# 5 7 ! 1 8 249# ! 2469#@ 23 3469 !
! 12489 6 2489 ! 3 249# 7 ! 5 128 149 !
+----------------------+----------------------+----------------------+
! 249# 8 1 ! 6 249# 3 ! 249# 7 5 !
! 56 249# 56 ! 249 7 8 ! 1249 123 1349 !
! 7 3 249# ! 5 1249#@ 1249 ! 249# 6 8 !
+----------------------+----------------------+----------------------+
! 35689 7 5689 ! 89 169 159 ! 136 4 2 !
! 2469 249 2469 ! 7 3 1249 ! 8 5 16 !
! 234568 1 24568 ! 248 246 245 ! 36 9 7 !
+----------------------+----------------------+----------------------+
Note: at this point, there are more instances of the (630-38) impossiblre patterns with less than 6 guardians ( a limit that is a parameter in SudoRules), but they will not be used and I removed them.
- Code: Select all
biv-chain[3]: r7n3{c1 c7} - r9c7{n3 n6} - b8n6{r9c5 r7c5} ==> r7c1≠6
z-chain[3]: r2n6{c7 c9} - c9n3{r2 r5} - c9n4{r5 .} ==> r2c7≠4
whip[1]: c7n4{r6 .} ==> r5c9≠4
z-chain[3]: r2n6{c7 c9} - c9n3{r2 r5} - c9n9{r5 .} ==> r2c7≠9
whip[1]: c7n9{r6 .} ==> r5c9≠9
EL13c259-OR2-whip[3]: OR2{{n1r6c5 | n6r2c7}} - b9n6{r7c7 r8c9} - r8n1{c9 .} ==> r6c6≠1- Code: Select all
hidden-single-in-a-block ==> r6c5=1
+----------------------+----------------------+----------------------+
! 12489 249 3 ! 249 5 6 ! 7 128 149 !
! 249 5 7 ! 1 8 249 ! 26 23 3469 !
! 12489 6 2489 ! 3 249 7 ! 5 128 149 !
+----------------------+----------------------+----------------------+
! 249 8 1 ! 6 249 3 ! 249 7 5 !
! 56 249 56 ! 249 7 8 ! 1249 123 13 !
! 7 3 249 ! 5 1 249 ! 249 6 8 !
+----------------------+----------------------+----------------------+
! 3589 7 5689 ! 89 69 159 ! 136 4 2 !
! 2469 249 2469 ! 7 3 1249 ! 8 5 16 !
! 234568 1 24568 ! 248 246 245 ! 36 9 7 !
+----------------------+----------------------+----------------------+
At least one candidate of a previous Trid-OR2-relation between candidates n8r3c3 n1r6c6 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n8r3c3
Trid-ORk-relation with only one candidate => r3c3=8Elementary end:
- Code: Select all
hidden-single-in-a-row ==> r1c8=8
hidden-pairs-in-a-column: c1{n3 n8}{r7 r9} ==> r9c1≠6, r9c1≠5, r9c1≠4, r9c1≠2, r7c1≠9, r7c1≠5
singles ==> r5c1=5, r5c3=6, r8c1=6, r8c9=1, r5c9=3, r2c8=3, r3c8=1, r5c8=2, r2c7=2, r2c9=6, r1c1=1, r5c7=1, r7c6=1, r9c6=5, r7c3=5
whip[1]: r7n9{c5 .} ==> r8c6≠9
x-wing-in-rows: n2{r3 r4}{c1 c5} ==> r9c5≠2
finned-x-wing-in-rows: n2{r1 r9}{c4 c2} ==> r8c2≠2
stte