#3323 in mith's TE3 min-expands

Post puzzles for others to solve here.

#3323 in mith's TE3 min-expands

Postby denis_berthier » Thu Sep 29, 2022 2:08 pm

#3323

Much easier than my previous one.

Code: Select all
+-------+-------+-------+
! . . . ! . . . ! 7 . 9 !
! . 5 7 ! 1 . 9 ! . . 6 !
! . 6 9 ! 7 3 . ! 1 5 . !
+-------+-------+-------+
! . . . ! 6 9 . ! . 1 . !
! 6 . . ! 5 . 3 ! . 7 . !
! . . . ! . 7 1 ! 6 . . !
+-------+-------+-------+
! 3 . 4 ! . . . ! 5 . . !
! 5 . 6 ! 3 . 7 ! . . . !
! . 8 2 ! . . . ! . . . !
+-------+-------+-------+
......7.9.571.9..6.6973.15....69..1.6..5.3.7.....716..3.4...5..5.63.7....82......;592;122738
SER = 10.9


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1248  1234  138   ! 248   24568 24568 ! 7     248   9     !
   ! 248   5     7     ! 1     248   9     ! 2348  2348  6     !
   ! 248   6     9     ! 7     3     248   ! 1     5     248   !
   +-------------------+-------------------+-------------------+
   ! 2478  2347  358   ! 6     9     248   ! 2348  1     23458 !
   ! 6     1249  18    ! 5     248   3     ! 2489  7     248   !
   ! 2489  2349  358   ! 248   7     1     ! 6     23489 23458 !
   +-------------------+-------------------+-------------------+
   ! 3     179   4     ! 289   1268  268   ! 5     2689  1278  !
   ! 5     19    6     ! 3     1248  7     ! 2489  2489  1248  !
   ! 179   8     2     ! 49    1456  456   ! 349   3469  1347  !
   +-------------------+-------------------+-------------------+
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #3323 in mith's TE3 min-expands

Postby yzfwsf » Thu Sep 29, 2022 11:40 pm

TH was used 4 times。
Hidden Text: Show
Locked Candidates 1 (Pointing): 3 in b1 => r1c8<>3
Hidden Pair: 56 in r1c5,r1c6 => r1c5<>248,r1c6<>248
2-String Kite: 9 in r5c7,r9c1 connected by b4p57 => r9c7 <> 9
Uniqueness Test 4: 56 in r19c56 => r9c56 <> 6
Hidden Single: 6 in r9 => r9c8=6
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r1c23,r9c1<>1,r1c1<>2,r1c1<>4,r1c1<>8
3r2c7 - (3=451)r9c567 - 1r9c1 = 1r1c1
3r4c7 - (3=451)r9c567 - 1r9c1 = 1r1c1
3r6c8 - 3r46c9 = 3r9c9 - (3=451)r9c567 - 1r9c1 = 1r1c1
9r6c8 - (9=2481)r1236c1
Hidden Single: 1 in r1 => r1c1=1
Hidden Single: 1 in c3 => r5c3=1
Almost Locked Set XY-Wing: A=r7c4568{12689}, B=r7c24568{126789}, C=r9c1456{14579}, X,Y=1, 7, Z=28 => r7c9<>2 r7c9<>8
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r1c5,r7c6<>6
3r2c7 - (3=451)r9c567 - (1=2486)r2578c5
3r4c7 - (3=451)r9c567 - (1=2486)r2578c5
3r6c8 - (3=24581)r34568c9 - (1=34795)r9c14679 - (5=6)r1c6
9r6c8 - 9r6c1 = 9r9c1 - (9=451)r9c456 - (1=2486)r2578c5
Hidden Single: 6 in r1 => r1c6=6
Hidden Single: 5 in r1 => r1c5=5
Hidden Single: 6 in r7 => r7c5=6
Hidden Single: 5 in r9 => r9c6=5
Hidden Pair: 17 in r7c2,r7c9 => r7c2<>9
Region Forcing Chain: Each 2 in c4 true in turn will all lead to: r6c1<>2
2r1c4 - 2r1c2 = 2r23c1
2r6c4
(2-9)r7c4 = 9r9c4 - 9r9c1 = 9r6c1
Region Forcing Chain: Each 8 in c4 true in turn will all lead to: r6c1<>8
8r1c4 - 8r1c3 = 8r23c1
8r6c4
(8-9)r7c4 = 9r9c4 - 9r9c1 = 9r6c1
Uniqueness External Test 2/4: 58 in r46c39 => r4c9<>8
AIC Type 2: (4=9)r6c1 - (9=7)r9c1 - r4c1 = 7r4c2 => r4c2<>4
Region Forcing Chain: Each 4 in c8 true in turn will all lead to: r6c2<>9
4r1c8 - 4r1c2 = 4r23c1 - (4=9)r6c1
(4-3)r2c8 = 3r6c8 - (3=24581)r34568c9 - (1=9)r8c2
4r6c8 - (4=9)r6c1
(4-9)r8c8 = 9r6c8,r8c2
X-Wing:9c27\r58 => r8c8<>9
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r8c5<>1
3r2c7 - (3=24891)b9p24567
3r4c7 - (3=24891)b9p24567
3r6c8 - (3=24581)r34568c9
9r6c8 - 9r5c7 = 9r8c7 - (9=1)r8c2
Hidden Single: 1 in c5 => r9c5=1
AIC Type 2: 4r8c5 = (4-9)r9c4 = r9c1 - r8c2 = 9r8c7 => r8c7<>4
Cell Forcing Chain: Each candidate in r1c8 true in turn will all lead to: r8c9<>4
2r1c8 - 2r78c8 = 2r8c79 - (2=84)r8c58
4r1c8 - 4r1c2 = 4r23c1 - (4=9)r6c1 - (9=374)r9c179
8r1c8 - 8r78c8 = 8r8c79 - (8=24)r8c58
Region Forcing Chain: Each 4 in c9 true in turn will all lead to: r5c5<>4
4r3c9 - 4r3c6 = 4r4c6
4r4c9 - (4=12783)r35789c9 - (3=4)r9c7 - 4r8c8 = 4r8c5
4r5c9
4r6c9 - (4=12783)r35789c9 - (3=4)r9c7 - 4r8c8 = 4r8c5
4r9c9 - 4r8c8 = 4r8c5
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r2c7<>4
3r2c7
3r4c7 - (3=4)r9c7
3r6c8 - 3r2c8 = 3r2c7
9r6c8 - 9r6c1 = 9r9c1 - (9=4)r9c4 - 4r8c5 = 4r2c5
ALS Discontinuous Nice Loop: (8=24)r5c59 - r3c9 = r12c8 - (4=2891)b9p2456 - (1=9)r8c2 - (9=248)r5c259 => r5c7<>2,r5c7<>8
Region Forcing Chain: Each 4 in r2 true in turn will all lead to: r4c1<>4
4r2c1
4r2c5 - 4r3c6 = 4r4c6
(4-3)r2c8 = 3r6c8 - (3=294)b4p578
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r4c7<>4
3r2c7 - (3=4)r9c7
3r4c7
3r6c8 - 3r46c9 = 3r9c9 - (3=4)r9c7
9r6c8 - (9=4)r5c7
Continuous Nice Loop: (4=9)r9c4 - r9c1 = r6c1 - r6c8 = (9-4)r5c7 = 4r9c7 => r9c9<>4
Whip[7]: Supposing 2r2c8 would causes 4 to disappear in Box 8 => r2c8<>2
2r2c8 - 3r2(c8=c7) - r9c7(3=4) - r8c8(4=8) - 8c7(r8=r4) - 8r5(c9=c5) - r2c5(8=4) - 4b8(p5=.)
Whip[9]: Supposing 4r2c8 would causes 8 to disappear in Box 3 => r2c8<>4
4r2c8 - 3r2(c8=c7) - 3r9(c7=c9) - 7r9(c9=c1) - 7r4(c1=c2) - 3r4(c2=c3) - r1c3(3=8) - 8r2(c1=c5) - 8r5(c5=c9) - 8b3(p9=.)
Broken Wing: {r1c48,r8c58,r9c4}, guardian-{r6c48,r1c2} => r6c2<>4
Hidden Pair: 49 in r5c2,r6c1 => r5c2<>2
Naked Pair: in r5c2,r5c7 => r5c9<>4,
Broken Wing: {r1c48,r3c19,r5c27,r28c5,r9c47,r6c1}, guardian-{r1c2,r2c1,r3c6} => r3c1<>4
X-Wing:4r34\c69 => r6c9<>4
Region Forcing Chain: Each 3 in r4 true in turn will all lead to: r2c7<>3
3r4c2 - (3=2491)r1568c2 - (1=24893)b9p24567
(3-5)r4c3 = 5r6c3 - (5=283)b6p169 - 3r6c8 = 3r2c8
3r4c7
3r4c9 - 3r6c8 = 3r2c8
Hidden Single: 3 in r2 => r2c8=3
Bivalue Oddagon (Type 2):28{r2c57,r5c59,r3c9} => -4r3c6
Hidden Single: 4 in r3 => r3c9=4
Hidden Single: 4 in r4 => r4c6=4
Hidden Pair: 49 in r5c7,r6c8 => r6c8<>28
Dual Bivalue Oddagon: 28{r1c48,r24c7,r5c59,r6c4},28{r2c57,r5c59,r4c7} => r4c7<>28
Naked Single: r4c7=3
Hidden Single: 3 in r9 => r9c9=3
Hidden Single: 7 in r9 => r9c1=7
Hidden Single: 7 in r4 => r4c2=7
Hidden Single: 7 in r7 => r7c9=7
Hidden Single: 1 in r7 => r7c2=1
Full House: r8c2=9
Hidden Single: 9 in r5 => r5c7=9
Hidden Single: 4 in r5 => r5c2=4
Hidden Single: 4 in r1 => r1c4=4
Hidden Single: 4 in r2 => r2c1=4
Hidden Single: 4 in r6 => r6c8=4
Hidden Single: 9 in r6 => r6c1=9
Hidden Single: 1 in r8 => r8c9=1
Hidden Single: 4 in r8 => r8c5=4
Hidden Single: 4 in r9 => r9c7=4
Full House: r9c4=9
Hidden Single: 9 in r7 => r7c8=9
Locked Candidates 2 (Claiming): 8 in r4 => r6c3<>8
Bivalue Universal Grave + 1: => r6c9 = 2
stte
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: #3323 in mith's TE3 min-expands

Postby DEFISE » Fri Sep 30, 2022 10:13 am

Too hard without general ORk-whips, ORk-forcing-whips, krakens and UR.
This time I think that contrad partial whips are not enough.

After basics :
Code: Select all
|-----------------------------------------------------------|
| 1248  1234  138   | 248   56    56    | 7     248   9     |
| 248   5     7     | 1     248   9     | 2348  2348  6     |
| 248   6     9     | 7     3     248   | 1     5     248   |
|-----------------------------------------------------------|
| 2478  2347  358   | 6     9     248   | 2348  1     23458 |
| 6     1249  18    | 5     248   3     | 2489  7     248   |
| 2489  2349  358   | 248   7     1     | 6     23489 23458 |
|-----------------------------------------------------------|
| 3     179   4     | 289   1268  268   | 5     2689  1278  |
| 5     19    6     | 3     1248  7     | 2489  2489  1248  |
| 179   8     2     | 49    1456  456   | 349   3469  1347  |
|-----------------------------------------------------------|


Tridagon (2,4,8) in b2p159, b3p249, b5p357, b6p168
with 4 guardians: 3r2c7, 3r4c7, 3r6c8, 9r6c8

whip[2]: r5n9{c7 c2}- r8n9{c2 .} => -9r9c7
whip[4]: c1n9{r6 r9}- c4n9{r9 r7}- c4n2{r7 r1}- c2n2{r1 .} => -2r6c1
whip[4]: c1n9{r6 r9}- c4n9{r9 r7}- c4n8{r7 r1}- c3n8{r1 .} => -8r6c1
Contrad. partial whip[3]* from 9r9c8: r9c4{n9 n4}- r9c7{n4 n3}- r2n3{c7 c8}- => -9r9c8
Contrad. partial whip[4]* from 9r6c2: c1n9{r6 r9}- r9c4{n9 n4}- r9c7{n4 n3}- r2n3{c7 c8}- => -9r6c2
Contrad. partial whip[7]* from 1r9c1: r9n7{c1 c9}- r7n7{c9 c2}- b7n9{r7c2 r8c2}- b9n9{r8c7 r7c8}- c8n6{r7 r9}- r9n3{c8 c7}- r2n3{c7 c8}- => -1r9c1
Single(s): 1r1c1, 1r5c3
Then the puzzle is solvable in T&E(1). Not bad for a T&E(3).

* a contrad. partial whip has the property that each guardian is seen by a right-linking candidate.
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #3323 in mith's TE3 min-expands

Postby denis_berthier » Fri Sep 30, 2022 1:25 pm

DEFISE wrote:with 4 guardians: 3r2c7, 3r4c7, 3r6c8, 9r6c8
Contrad. partial whip[3]* from 9r9c8: r9c4{n9 n4}- r9c7{n4 n3}- r2n3{c7 c8}- => -9r9c8

It's a different presentation of the OR4-contrad-whip[4]: r9c4{n9 n4} - r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} => r9c8 ≠ 9

In my definition of an ORk-contrad-whip, the ORk-relation plays the role the last CSP-Variable plays in a whip.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #3323 in mith's TE3 min-expands

Postby DEFISE » Fri Sep 30, 2022 10:20 pm

I had given up because a semi-automatic solution seemed to me too long in the case of this puzzle, unlike the previous puzzles.
But after integrating the ORk-contrad-whips in my "Simplest-first" software, I automatically obtained this path in W10:

Hidden Text: Show
After basics :
Code: Select all
|-----------------------------------------------------------|
| 1248  1234  138   | 248   56    56    | 7     248   9     |
| 248   5     7     | 1     248   9     | 2348  2348  6     |
| 248   6     9     | 7     3     248   | 1     5     248   |
|-----------------------------------------------------------|
| 2478  2347  358   | 6     9     248   | 2348  1     23458 |
| 6     1249  18    | 5     248   3     | 2489  7     248   |
| 2489  2349  358   | 248   7     1     | 6     23489 23458 |
|-----------------------------------------------------------|
| 3     179   4     | 289   1268  268   | 5     2689  1278  |
| 5     19    6     | 3     1248  7     | 2489  2489  1248  |
| 179   8     2     | 49    1456  456   | 349   3469  1347  |
|-----------------------------------------------------------|


Tridagon (2,4,8) in b2p159, b3p249, b5p357, b6p168
with 4 gardiens: 3r2c7, 3r4c7, 3r6c8, 9r6c8


whip[2]: r5n9{c7 c2}- r8n9{c2 .} => -9r9c7
whip[4]: c1n9{r6 r9}- c4n9{r9 r7}- c4n2{r7 r1}- c2n2{r1 .} => -2r6c1
whip[4]: c1n9{r6 r9}- c4n9{r9 r7}- c4n8{r7 r1}- c3n8{r1 .} => -8r6c1
OR4-contrad-whip[4]: r9c4{n9 n4}- r9c7{n4 n3}- r2n3{c7 c8}- OR{4 guardians .}
=> -9r9c8
OR4-contrad-whip[5]: c1n9{r6 r9}- r9c4{n9 n4}- r9c7{n4 n3}- r2n3{c7 c8}- OR{4 guardians .}
=> -9r6c2
OR4-contrad-whip[8]: c9n7{r7 r9}- c9n1{r9 r8}- r8c2{n1 n9}- b9n9{r8c7 r7c8}- c8n6{r7 r9}- r9n3{c8 c7}- r2n3{c7 c8}- OR{4 guardians .}
=> -2r7c9
OR4-contrad-whip[8]: c9n7{r7 r9}- c9n1{r9 r8}- r8c2{n1 n9}- b9n9{r8c7 r7c8}- c8n6{r7 r9}- r9n3{c8 c7}- r2n3{c7 c8}- OR{4 guardians .}
=> -8r7c9
OR4-contrad-whip[8]: r9n7{c1 c9}- r7n7{c9 c2}- b7n9{r7c2 r8c2}- b9n9{r8c7 r7c8}- c8n6{r7 r9}- r9n3{c8 c7}- r2n3{c7 c8}-
OR{4 guardians .}
=> -1r9c1
Single(s): 1r1c1, 1r5c3
whip[3]: r6c1{n4 n9}- r9c1{n9 n7}- r4n7{c1 .} => -4r4c2
OR4-contrad-whip[8]: r9n1{c5 c9}- r7n1{c9 c2}- r8c2{n1 n9}- b9n9{r8c7 r7c8}- c8n6{r7 r9}- r9n3{c8 c7}- r2n3{c7 c8}- OR{4 guardians .}
=> -1r8c5
Naked triplets: 248c5r258 => -2r7c5 -8r7c5 -4r9c5
OR4-contrad-whip[7]: c7n9{r8 r5}- r6n9{c8 c1}- r9n9{c1 c4}- r9n4{c4 c6}- r9c7{n4 n3}- r2n3{c7 c8}- OR{4 guardians .}
=> -4r8c7
OR4-contrad-whip[8]: r9c7{n4 n3}- r2n3{c7 c8}- r9c8{n3 n6}- r9c6{n6 n5}- b8n4{r9c6 r8c5}- r9c4{n4 n9}- c1n9{r9 r6}- OR{4 guardians .}
=> -4r9c9
OR4-contrad-whip[10]: r9n5{c6 c5}- c5n1{r9 r7}- r7c9{n1 n7}- r7c2{n7 n9}- r5n9{c2 c7}- r8n9{c7 c8}- r8n4{c8 c9}- r9c7{n4 n3}- r2n3{c7 c8}- OR{4 guardians .}
=> -4r9c6
Naked pairs: 56c6r19 => -6r7c6
OR4-contrad-whip[7]: c6n4{r4 r3}- c9n4{r3 r8}- r9c7{n4 n3}- r2n3{c7 c8}- r2n4{c8 c1}- r6c1{n4 n9}- OR{4 guardians .}
=> -4r4c7

From here there are only classic whips.

whip[5]: r9n4{c7 c4}- r9n9{c4 c1}- r6c1{n9 n4}- r3n4{c1 c6}- r4n4{c6 .} => -4r8c9
whip[7]: b8n4{r8c5 r9c4}- r9n9{c4 c1}- r6c1{n9 n4}- r4n4{c1 c9}- c9n5{r4 r6}- c9n3{r6 r9}- r9c7{n3 .} => -4r5c5
whip[5]: r5n9{c7 c2}- r6c1{n9 n4}- r5n4{c2 c9}- r3n4{c9 c6}- r4n4{c6 .} => -2r5c7
whip[5]: r5n9{c7 c2}- r6c1{n9 n4}- r5n4{c2 c9}- r3n4{c9 c6}- r4n4{c6 .} => -8r5c7
whip[6]: r7c6{n2 n8}- b8n2{r7c6 r8c5}- r5c5{n2 n8}- c4n8{r6 r1}- r1c8{n8 n4}- r8n4{c8 .} => -2r7c8
Box/Line: 2r7b8 => -2r8c5
whip[6]: r8c5{n4 n8}- r7n8{c4 c8}- r7c6{n8 n2}- b2n2{r3c6 r1c4}- r1c8{n2 n4}- r8n4{c8 .} => -4r2c5
Single(s): 4r8c5, 9r9c4, 7r9c1, 7r4c2, 7r7c9, 9r6c1, 9r5c7
Box/Line: 8r8b9 => -8r7c8
whip[5]: r2c5{n2 n8}- r5n8{c5 c9}- r5n4{c9 c2}- r1n4{c2 c8}- b3n8{r1c8 .} => -2r1c4
whip[3]: r1n2{c8 c2}- r2n2{c1 c5}- r5n2{c5 .} => -2r3c9
whip[3]: r1c4{n4 n8}- r2c5{n8 n2}- b3n2{r2c7 .} => -4r1c8
whip[3]: r5c5{n8 n2}- c4n2{r6 r7}- r7c6{n2 .} => -8r4c6
whip[3]: r5n4{c9 c2}- r1n4{c2 c4}- r6n4{c4 .} => -4r4c9
whip[3]: r1c8{n2 n8}- r3c9{n8 n4}- b6n4{r5c9 .} => -2r6c8
whip[4]: r2c5{n2 n8}- r5n8{c5 c9}- r3c9{n8 n4}- r2n4{c7 .} => -2r2c1
whip[3]: r2c1{n4 n8}- r2c5{n8 n2}- r3n2{c6 .} => -4r3c1
whip[2]: r3n4{c9 c6}- c4n4{r1 .} => -4r6c9
whip[3]: r1n4{c2 c4}- r3n4{c6 c9}- r5n4{c9 .} => -4r6c2
whip[3]: r6c2{n3 n2}- r5c2{n2 n4}- b6n4{r5c9 .} => -3r6c8
whip[5]: r6c8{n4 n8}- r6n4{c8 c4}- r4c6{n4 n2}- r4c7{n2 n3}- r2n3{c7 .} => -4r2c8
whip[5]: b5n4{r4c6 r6c4}- r6c8{n4 n8}- r4c7{n8 n3}- r9c7{n3 n4}- c8n4{r9 .} => -2r4c6
Single(s): 4r4c6, 4r3c9, 4r2c1, 4r1c4, 4r5c2, 4r6c8, 4r9c7
whip[3]: r2n2{c8 c5}- b5n2{r5c5 r6c4}- c2n2{r6 .} => -2r1c8
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #3323 in mith's TE3 min-expands

Postby denis_berthier » Sat Oct 01, 2022 6:02 am

.
I chose this puzzle because it requires the full power of ORk-whips for a solution with relatively short chains (length ≤ 7) and ORk-chains (length ≤ 6).

Like all of you, SudoRules reaches a point with an anti-tridagon with 4 guardians, after only a few easy steps.
Code: Select all
hidden-pairs-in-a-row: r1{n5 n6}{c5 c6} ==> r1c6≠8, r1c6≠4, r1c6≠2, r1c5≠8, r1c5≠4, r1c5≠2
finned-x-wing-in-columns: n9{c1 c8}{r6 r9} ==> r9c7≠9
z-chain[4]: c1n9{r6 r9} - c4n9{r9 r7} - c4n2{r7 r1} - c2n2{r1 .} ==> r6c1≠2
z-chain[4]: c1n9{r6 r9} - c4n9{r9 r7} - c4n8{r7 r1} - c3n8{r1 .} ==> r6c1≠8
   +-------------------+-------------------+-------------------+
   ! 1248  1234  138   ! 248   56    56    ! 7     248   9     !
   ! 248   5     7     ! 1     248   9     ! 2348  2348  6     !
   ! 248   6     9     ! 7     3     248   ! 1     5     248   !
   +-------------------+-------------------+-------------------+
   ! 2478  2347  358   ! 6     9     248   ! 2348  1     23458 !
   ! 6     1249  18    ! 5     248   3     ! 2489  7     248   !
   ! 49    2349  358   ! 248   7     1     ! 6     23489 23458 !
   +-------------------+-------------------+-------------------+
   ! 3     179   4     ! 289   1268  268   ! 5     2689  1278  !
   ! 5     19    6     ! 3     1248  7     ! 2489  2489  1248  !
   ! 179   8     2     ! 49    1456  456   ! 34    3469  1347  !
   +-------------------+-------------------+-------------------+

OR4-anti-tridagon[12] for digits 2, 4 and 8 in blocks:
        b2, with cells: r1c4, r2c5, r3c6
        b3, with cells: r1c8, r2c7, r3c9
        b5, with cells: r6c4, r5c5, r4c6
        b6, with cells: r6c8, r5c9, r4c7
with 4 guardians: n3r2c7 n3r4c7 n3r6c8 n9r6c8


This is where OR4-whips come into play:
Trid-OR4-whip[4]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - b9n9{r7c8 .} ==> r8c7≠4
Trid-OR4-whip[4]: r9c4{n9 n4} - r9c7{n4 n3} - OR4{{n3r4c7 n9r6c8 n3r2c7 | n3r6c8}} - r2n3{c8 .} ==> r9c8≠9
Trid-OR4-whip[5]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - c1n9{r6 r9} - r9n7{c1 .} ==> r9c9≠4
Trid-OR4-whip[5]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - c1n9{r6 r9} - r9c4{n9 .} ==> r9c8≠4
Trid-OR4-whip[5]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - c1n9{r6 r9} - r9c4{n9 .} ==> r9c6≠4

naked-pairs-in-a-column: c6{r1 r9}{n5 n6} ==> r7c6≠6
Trid-OR4-whip[5]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - c1n9{r6 r9} - r9c4{n9 .} ==> r9c5≠4
biv-chain[3]: b8n4{r8c5 r9c4} - r9n9{c4 c1} - r8c2{n9 n1} ==> r8c5≠1
naked-triplets-in-a-column: c5{r2 r5 r8}{n2 n4 n8} ==> r7c5≠8, r7c5≠2
t-whip[4]: r8c2{n1 n9} - b9n9{r8c8 r7c8} - r7n6{c8 c5} - c5n1{r7 .} ==> r9c1≠1
singles ==> r1c1=1, r5c3=1
biv-chain[3]: r4n7{c2 c1} - r9c1{n7 n9} - r6c1{n9 n4} ==> r4c2≠4
z-chain[4]: r7n7{c9 c2} - r7n1{c2 c5} - r9n1{c5 c9} - c9n7{r9 .} ==> r7c9≠8, r7c9≠2
Trid-OR4-whip[5]: c1n9{r6 r9} - r9c4{n9 n4} - r9c7{n4 n3} - OR4{{n3r4c7 n9r6c8 n3r2c7 | n3r6c8}} - r2n3{c8 .} ==> r6c2≠9
Trid-OR4-whip[6]: r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r6c8 n3r4c7 n3r2c7 | n9r6c8}} - r6c1{n9 n4} - c2n4{r6 r1} - c8n4{r1 .} ==> r8c9≠4


The end has nothing noticeable; it is a standard solution in W7:
Code: Select all
finned-x-wing-in-columns: n4{c6 c9}{r3 r4} ==> r4c7≠4
whip[7]: b8n4{r8c5 r9c4} - r9n9{c4 c1} - c1n7{r9 r4} - r4n4{c1 c9} - c9n5{r4 r6} - c9n3{r6 r9} - r9n7{c9 .} ==> r5c5≠4
biv-chain[2]: r9n4{c7 c4} - c5n4{r8 r2} ==> r2c7≠4
biv-chain[4]: c7n4{r5 r9} - r9c4{n4 n9} - c1n9{r9 r6} - b6n9{r6c8 r5c7} ==> r5c7≠2, r5c7≠8
t-whip[7]: r8n2{c9 c5} - r8n4{c5 c8} - r9n4{c7 c4} - b5n4{r6c4 r4c6} - c6n2{r4 r3} - r1c4{n2 n8} - r1c8{n8 .} ==> r7c8≠2
whip[1]: b9n2{r8c9 .} ==> r8c5≠2
whip[6]: r8c5{n4 n8} - b9n8{r8c7 r7c8} - r7c6{n8 n2} - b2n2{r3c6 r1c4} - r1c8{n2 n4} - r8n4{c8 .} ==> r2c5≠4
singles ==> r8c5=4, r9c4=9, r9c1=7, r4c2=7, r7c9=7, r6c1=9, r5c7=9, r9c7=4
whip[1]: r8n8{c9 .} ==> r7c8≠8
whip[5]: r2c5{n2 n8} - r5n8{c5 c9} - r5n4{c9 c2} - r4c1{n4 n8} - r3n8{c1 .} ==> r2c1≠2
z-chain[3]: r2n2{c8 c5} - r5n2{c5 c2} - b1n2{r1c2 .} ==> r3c9≠2
biv-chain[3]: c6n4{r4 r3} - r3c9{n4 n8} - r5n8{c9 c5} ==> r4c6≠8
biv-chain[3]: r2c5{n2 n8} - b5n8{r5c5 r6c4} - c4n4{r6 r1} ==> r1c4≠2
biv-chain[3]: r1n2{c8 c2} - r3n2{c1 c6} - b2n4{r3c6 r1c4} ==> r1c8≠4
finned-swordfish-in-columns: n4{c1 c6 c8}{r2 r3 r4} ==> r4c9≠4
biv-chain[3]: c8n4{r6 r2} - r3c9{n4 n8} - r1c8{n8 n2} ==> r6c8≠2
biv-chain[3]: b1n2{r3c1 r1c2} - r1c8{n2 n8} - r3c9{n8 n4} ==> r3c1≠4
finned-x-wing-in-columns: n4{c8 c1}{r2 r6} ==> r6c2≠4
biv-chain[2]: r3n4{c9 c6} - b5n4{r4c6 r6c4} ==> r6c9≠4
biv-chain[3]: r6n4{c8 c4} - r1n4{c4 c2} - c2n3{r1 r6} ==> r6c8≠3
z-chain[5]: c5n2{r5 r2} - r3n2{c6 c1} - r4n2{c1 c6} - r4n4{c6 c1} - r5c2{n4 .} ==> r5c9≠2
naked-pairs-in-a-block: b6{r5c9 r6c8}{n4 n8} ==> r6c9≠8, r4c9≠8, r4c7≠8
whip[1]: r4n8{c3 .} ==> r6c3≠8
naked-pairs-in-a-column: c9{r3 r5}{n4 n8} ==> r8c9≠8
hidden-pairs-in-a-row: r6{n4 n8}{c4 c8} ==> r6c4≠2
singles ==> r7c4=2, r7c6=8
x-wing-in-columns: n2{c1 c6}{r3 r4} ==> r4c9≠2, r4c7≠2
stte


Note for someone who asked me: do I intend to publish the ORk-whips? Yes, like all my other resolution rules. But don't expect it in the forthcoming week. I'l still testing them.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #3323 in mith's TE3 min-expands

Postby DEFISE » Sat Oct 01, 2022 8:16 am

Fine !
Have you tried with ORk-forcing-whips only ?
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #3323 in mith's TE3 min-expands

Postby denis_berthier » Sat Oct 01, 2022 8:53 am

DEFISE wrote:Have you tried with ORk-forcing-whips only ?

Yes; it works also, but it requires longer chains: W8 + OR4FW8

Code: Select all
hidden-pairs-in-a-row: r1{n5 n6}{c5 c6} ==> r1c6≠8, r1c6≠4, r1c6≠2, r1c5≠8, r1c5≠4, r1c5≠2
finned-x-wing-in-columns: n9{c1 c8}{r6 r9} ==> r9c7≠9
z-chain[4]: c1n9{r6 r9} - c4n9{r9 r7} - c4n2{r7 r1} - c2n2{r1 .} ==> r6c1≠2
z-chain[4]: c1n9{r6 r9} - c4n9{r9 r7} - c4n8{r7 r1} - c3n8{r1 .} ==> r6c1≠8
whip[8]: r6c1{n9 n4} - b1n4{r1c1 r1c2} - c4n4{r1 r9} - r9c7{n4 n3} - r2n3{c7 c8} - c8n4{r2 r8} - r8n9{c8 c7} - r5n9{c7 .} ==> r6c2≠9
   +-------------------+-------------------+-------------------+
   ! 1248  1234  138   ! 248   56    56    ! 7     248   9     !
   ! 248   5     7     ! 1     248   9     ! 2348  2348  6     !
   ! 248   6     9     ! 7     3     248   ! 1     5     248   !
   +-------------------+-------------------+-------------------+
   ! 2478  2347  358   ! 6     9     248   ! 2348  1     23458 !
   ! 6     1249  18    ! 5     248   3     ! 2489  7     248   !
   ! 49    234   358   ! 248   7     1     ! 6     23489 23458 !
   +-------------------+-------------------+-------------------+
   ! 3     179   4     ! 289   1268  268   ! 5     2689  1278  !
   ! 5     19    6     ! 3     1248  7     ! 2489  2489  1248  !
   ! 179   8     2     ! 49    1456  456   ! 34    3469  1347  !
   +-------------------+-------------------+-------------------+

OR4-anti-tridagon[12] for digits 2, 4 and 8 in blocks:
        b2, with cells: r1c4, r2c5, r3c6
        b3, with cells: r1c8, r2c7, r3c9
        b5, with cells: r6c4, r5c5, r4c6
        b6, with cells: r6c8, r5c9, r4c7
with 4 guardians: n3r2c7 n3r4c7 n3r6c8 n9r6c8


Code: Select all
Trid-OR4-forcing-whip-elim[6]:
   || n3r2c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r4c7 - partial-whip[1]: r9c7{n3 n4} -
   || n9r6c8 - partial-whip[1]: c7n9{r5 r8} -
   || n3r6c8 - partial-whip[2]: r2n3{c8 c7} - r9c7{n3 n4} -
 ==> r8c7≠4

Trid-OR4-forcing-whip-elim[6]:
   || n3r2c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r4c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r6c8 - partial-whip[1]: c9n3{r6 r9} -
   || n9r6c8 - partial-whip[2]: c1n9{r6 r9} - r9n7{c1 c9} -
 ==> r9c9≠4

Trid-OR4-forcing-whip-elim[7]:
   || n3r2c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r4c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r6c8 - partial-whip[2]: r2n3{c8 c7} - r9c7{n3 n4} -
   || n9r6c8 - partial-whip[2]: c1n9{r6 r9} - r9c4{n9 n4} -
 ==> r9c8≠4

Trid-OR4-forcing-whip-elim[7]:
   || n3r2c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r4c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r6c8 - partial-whip[2]: r2n3{c8 c7} - r9c7{n3 n4} -
   || n9r6c8 - partial-whip[2]: c1n9{r6 r9} - r9c4{n9 n4} -
 ==> r9c6≠4
naked-pairs-in-a-column: c6{r1 r9}{n5 n6} ==> r7c6≠6

Trid-OR4-forcing-whip-elim[7]:
   || n3r2c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r4c7 - partial-whip[1]: r9c7{n3 n4} -
   || n3r6c8 - partial-whip[2]: r2n3{c8 c7} - r9c7{n3 n4} -
   || n9r6c8 - partial-whip[2]: c1n9{r6 r9} - r9c4{n9 n4} -
 ==> r9c5≠4

Trid-OR4-forcing-whip-elim[8]:
   || n9r6c8 -
   || n3r2c7 - partial-whip[2]: r9c7{n3 n4} - r9c4{n4 n9} -
   || n3r4c7 - partial-whip[2]: r9c7{n3 n4} - r9c4{n4 n9} -
   || n3r6c8 - partial-whip[3]: r2n3{c8 c7} - r9c7{n3 n4} - r9c4{n4 n9} -
 ==> r9c8≠9

Code: Select all
biv-chain[3]: r8c2{n1 n9} - r9n9{c1 c4} - b8n4{r9c4 r8c5} ==> r8c5≠1
naked-triplets-in-a-column: c5{r2 r5 r8}{n2 n4 n8} ==> r7c5≠8, r7c5≠2
t-whip[4]: r8c2{n1 n9} - b9n9{r8c8 r7c8} - r7n6{c8 c5} - c5n1{r7 .} ==> r9c1≠1
singles ==> r1c1=1, r5c3=1
biv-chain[3]: r4n7{c2 c1} - r9c1{n7 n9} - r6c1{n9 n4} ==> r4c2≠4
z-chain[4]: r7n7{c9 c2} - r7n1{c2 c5} - r9n1{c5 c9} - c9n7{r9 .} ==> r7c9≠8, r7c9≠2
whip[7]: r9n4{c7 c4} - r9n9{c4 c1} - r6c1{n9 n4} - b5n4{r6c4 r5c5} - r2n4{c5 c8} - r2n3{c8 c7} - r9c7{n3 .} ==> r4c7≠4
whip[5]: r9n4{c7 c4} - r9n9{c4 c1} - r6c1{n9 n4} - r4n4{c1 c6} - r3n4{c6 .} ==> r8c9≠4
whip[7]: b8n4{r8c5 r9c4} - r9n9{c4 c1} - c1n7{r9 r4} - r4n4{c1 c9} - c9n5{r4 r6} - c9n3{r6 r9} - r9n7{c9 .} ==> r5c5≠4
biv-chain[2]: r9n4{c7 c4} - c5n4{r8 r2} ==> r2c7≠4
biv-chain[4]: c7n4{r5 r9} - r9c4{n4 n9} - c1n9{r9 r6} - b6n9{r6c8 r5c7} ==> r5c7≠2, r5c7≠8
t-whip[7]: r8n2{c9 c5} - r8n4{c5 c8} - r9n4{c7 c4} - b5n4{r6c4 r4c6} - c6n2{r4 r3} - r1c4{n2 n8} - r1c8{n8 .} ==> r7c8≠2
whip[1]: b9n2{r8c9 .} ==> r8c5≠2
whip[6]: r8c5{n4 n8} - b9n8{r8c7 r7c8} - r7c6{n8 n2} - b2n2{r3c6 r1c4} - r1c8{n2 n4} - r8n4{c8 .} ==> r2c5≠4
singles ==> r8c5=4, r9c4=9, r9c1=7, r4c2=7, r7c9=7, r6c1=9, r5c7=9, r9c7=4
whip[1]: r8n8{c9 .} ==> r7c8≠8
whip[5]: r2c5{n2 n8} - r5n8{c5 c9} - r5n4{c9 c2} - r4c1{n4 n8} - r3n8{c1 .} ==> r2c1≠2
z-chain[3]: r2n2{c8 c5} - r5n2{c5 c2} - b1n2{r1c2 .} ==> r3c9≠2
biv-chain[3]: c6n4{r4 r3} - r3c9{n4 n8} - r5n8{c9 c5} ==> r4c6≠8
biv-chain[3]: r2c5{n2 n8} - b5n8{r5c5 r6c4} - c4n4{r6 r1} ==> r1c4≠2
biv-chain[3]: r1n2{c8 c2} - r3n2{c1 c6} - b2n4{r3c6 r1c4} ==> r1c8≠4
finned-swordfish-in-columns: n4{c1 c6 c8}{r2 r3 r4} ==> r4c9≠4
biv-chain[3]: c8n4{r6 r2} - r3c9{n4 n8} - r1c8{n8 n2} ==> r6c8≠2
biv-chain[3]: b1n2{r3c1 r1c2} - r1c8{n2 n8} - r3c9{n8 n4} ==> r3c1≠4
finned-x-wing-in-columns: n4{c8 c1}{r2 r6} ==> r6c2≠4
biv-chain[2]: r3n4{c9 c6} - b5n4{r4c6 r6c4} ==> r6c9≠4
biv-chain[3]: r6n4{c8 c4} - r1n4{c4 c2} - c2n3{r1 r6} ==> r6c8≠3
z-chain[5]: c5n2{r5 r2} - r3n2{c6 c1} - r4n2{c1 c6} - r4n4{c6 c1} - r5c2{n4 .} ==> r5c9≠2
naked-pairs-in-a-block: b6{r5c9 r6c8}{n4 n8} ==> r6c9≠8, r4c9≠8, r4c7≠8
whip[1]: r4n8{c3 .} ==> r6c3≠8
naked-pairs-in-a-column: c9{r3 r5}{n4 n8} ==> r8c9≠8
hidden-pairs-in-a-row: r6{n4 n8}{c4 c8} ==> r6c4≠2
singles ==> r7c4=2, r7c6=8
x-wing-in-columns: n2{c1 c6}{r3 r4} ==> r4c9≠2, r4c7≠2
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #3323 in mith's TE3 min-expands

Postby denis_berthier » Sat Oct 01, 2022 9:00 am

.
It also works using only ORk-contrad-whips (which are a particular case of ORk-whips), but again, it requires longer lengths: 8

Same start as above until the OR4-anti-tridagon[12] for digits 2, 4 and 8 in blocks. Then:

Trid-OR4-ctr-whip[8]: c1n9{r9 r6} - r5n9{c2 c7} - r8n9{c7 c2} - r7n9{c2 c4} - r9c4{n9 n4} - r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n9r6c8 n3r6c8 n3r4c7 n3r2c7 | .}} ==> r9c8≠9
Trid-OR4-ctr-whip[8]: r9c7{n4 n3} - r2n3{c7 c8} - r9c8{n3 n6} - r9c6{n6 n5} - b8n4{r9c6 r8c5} - r9c4{n4 n9} - c1n9{r9 r6} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r9c9≠4
Trid-OR4-ctr-whip[8]: c9n7{r7 r9} - c9n1{r9 r8} - r8c2{n1 n9} - b9n9{r8c8 r7c8} - c8n6{r7 r9} - r9n3{c8 c7} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r7c9≠2
Trid-OR4-ctr-whip[8]: c9n7{r7 r9} - c9n1{r9 r8} - r8c2{n1 n9} - b9n9{r8c8 r7c8} - c8n6{r7 r9} - r9n3{c8 c7} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r7c9≠8
Trid-OR4-ctr-whip[8]: r9n7{c1 c9} - r7n7{c9 c2} - b7n9{r7c2 r8c2} - b9n9{r8c8 r7c8} - c8n6{r7 r9} - r9n3{c8 c7} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r9c1≠1

singles ==> r1c1=1, r5c3=1
biv-chain[3]: r4n7{c2 c1} - r9c1{n7 n9} - r6c1{n9 n4} ==> r4c2≠4
Trid-OR4-ctr-whip[8]: r9n1{c5 c9} - r7n1{c9 c2} - r8c2{n1 n9} - b9n9{r8c7 r7c8} - c8n6{r7 r9} - r9n3{c8 c7} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r8c5≠1
naked-triplets-in-a-column: c5{r2 r5 r8}{n2 n4 n8} ==> r9c5≠4, r7c5≠8, r7c5≠2
Trid-OR4-ctr-whip[7]: c7n9{r8 r5} - r6n9{c8 c1} - r9n9{c1 c4} - r9n4{c4 c6} - r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r8c7≠4
Trid-OR4-ctr-whip[10]: r9n5{c6 c5} - c5n1{r9 r7} - r7c9{n1 n7} - r7c2{n7 n9} - r5n9{c2 c7} - r8n9{c7 c8} - r8n4{c8 c9} - r9c7{n4 n3} - r2n3{c7 c8} - OR4{{n3r2c7 n3r4c7 n3r6c8 n9r6c8 | .}} ==> r9c6≠4


Code: Select all
naked-pairs-in-a-column: c6{r1 r9}{n5 n6} ==> r7c6≠6
whip[7]: r9n4{c8 c4} - r9n9{c4 c1} - r6c1{n9 n4} - b1n4{r2c1 r1c2} - c8n4{r1 r2} - r2n3{c8 c7} - r9c7{n3 .} ==> r8c9≠4
finned-x-wing-in-columns: n4{c6 c9}{r3 r4} ==> r4c7≠4
whip[7]: b8n4{r8c5 r9c4} - r9n9{c4 c1} - c1n7{r9 r4} - r4n4{c1 c9} - c9n5{r4 r6} - c9n3{r6 r9} - r9n7{c9 .} ==> r5c5≠4
t-whip[5]: r5n9{c7 c2} - c1n9{r6 r9} - r9c4{n9 n4} - c5n4{r8 r2} - c7n4{r2 .} ==> r5c7≠2, r5c7≠8
t-whip[7]: r8n2{c9 c5} - r8n4{c5 c8} - r9n4{c7 c4} - b5n4{r6c4 r4c6} - c6n2{r4 r3} - r1c4{n2 n8} - r1c8{n8 .} ==> r7c8≠2
whip[1]: b9n2{r8c9 .} ==> r8c5≠2
whip[6]: r8c5{n4 n8} - b9n8{r8c7 r7c8} - r7c6{n8 n2} - b2n2{r3c6 r1c4} - r1c8{n2 n4} - r8n4{c8 .} ==> r2c5≠4
singles ==> r8c5=4, r9c4=9, r9c1=7, r4c2=7, r7c9=7, r6c1=9, r5c7=9, r7c8≠8
whip[5]: r2c5{n2 n8} - r5n8{c5 c9} - r5n4{c9 c2} - r4c1{n4 n8} - r3n8{c1 .} ==> r2c1≠2
z-chain[3]: r2n2{c8 c5} - r5n2{c5 c2} - b1n2{r1c2 .} ==> r3c9≠2
biv-chain[3]: c6n4{r4 r3} - r3c9{n4 n8} - r5n8{c9 c5} ==> r4c6≠8
biv-chain[3]: r2c5{n2 n8} - b5n8{r5c5 r6c4} - c4n4{r6 r1} ==> r1c4≠2
biv-chain[3]: r1n2{c8 c2} - r3n2{c1 c6} - b2n4{r3c6 r1c4} ==> r1c8≠4
finned-swordfish-in-rows: n4{r1 r5 r6}{c4 c2 c9} ==> r4c9≠4
biv-chain[3]: b1n2{r3c1 r1c2} - r1c8{n2 n8} - r3c9{n8 n4} ==> r3c1≠4
biv-chain[2]: r3n4{c9 c6} - b5n4{r4c6 r6c4} ==> r6c9≠4
finned-swordfish-in-columns: n4{c7 c8 c1}{r2 r9 r6} ==> r6c2≠4
biv-chain[3]: r6n4{c8 c4} - r1c4{n4 n8} - r1c8{n8 n2} ==> r6c8≠2
biv-chain[3]: r6n4{c8 c4} - r1n4{c4 c2} - c2n3{r1 r6} ==> r6c8≠3
z-chain[5]: c5n2{r5 r2} - r3n2{c6 c1} - r4n2{c1 c6} - r4n4{c6 c1} - r5c2{n4 .} ==> r5c9≠2
naked-pairs-in-a-block: b6{r5c9 r6c8}{n4 n8} ==> r6c9≠8, r4c9≠8, r4c7≠8
whip[1]: r4n8{c3 .} ==> r6c3≠8
naked-pairs-in-a-column: c9{r3 r5}{n4 n8} ==> r8c9≠8
hidden-pairs-in-a-row: r6{n4 n8}{c4 c8} ==> r6c4≠2
singles ==> r7c4=2, r7c6=8
x-wing-in-columns: n2{c1 c6}{r3 r4} ==> r4c9≠2, r4c7≠2
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #3323 in mith's TE3 min-expands

Postby Cenoman » Sun Oct 02, 2022 10:27 pm

A solution using the TH not more than once:
Code: Select all
 +----------------------+---------------------+-------------------------+
 |  1248   1234   138   |  248   56*    56*   |  7      248     9       |
 |  248    5      7     |  1     248    9     |  2348   2348    6       |
 |  248    6      9     |  7     3      248   |  1      5       248     |
 +----------------------+---------------------+-------------------------+
 |  2478   2347   358   |  6     9      248   |  2348   1       23458   |
 |  6      1249   18    |  5     248    3     |  2489   7       248     |
 |  2489   2349   358   |  248   7      1     |  6      23489   23458   |
 +----------------------+---------------------+-------------------------+
 |  3      179    4     |  289   1268   268   |  5      2689    1278    |
 |  5      19     6     |  3     1248   7     |  2489   2489    1248    |
 |  179    8      2     |  49    1456*  456*  |  349    349+6   1347    |
 +----------------------+---------------------+-------------------------+

1. UR(56)r19c56 using single external => +6 r9c8

Code: Select all
 +----------------------+---------------------+-------------------------+
 |  1248   1234   138   |  248*  56     56    |  7      248*    9       |
 |  248    5      7     |  1     248*   9     | d2348*  2348    6       |
 |  248    6      9     |  7     3      248*  |  1      5       248*    |
 +----------------------+---------------------+-------------------------+
 |  2478   2347   358   |  6     9      248*  | d2348*  1       23458   |
 |  6     g1249   18    |  5     248*   3     | f2489   7       248*    |
 |  2489   2349   358   |  248*  7      1     |  6     e23489*  23458   |
 +----------------------+---------------------+-------------------------+
 |  3      179    4     |  289   1268   268   |  5      289     1278    |
 |  5      19     6     |  3     1248   7     |  2489   2489    1248    |
 |ha79-1   8      2     |  49    145    45    | c349    6      b37-14   |
 +----------------------+---------------------+-------------------------+

2. TH(248)b2356 having four guardians: 3r2c7, 3r4c7, 3r6c8, 9r6c8. Note that 3r2c7 and 3r6c8 have the same parity (both conjugates of 3r2c8); only one chain is needed.
(7)r9c1 = (7-3)r9c9 = r9c7 - (3)r24c7 == (9)r6c8 - r5c7 = r5c2 - r6c1 = (9)r9c1 Loop => -1 r9c1, -14 r9c9; lcls, 7 placements

Code: Select all
 +----------------------+--------------------+-------------------------+
 |  1     A234   A38    |BA248   5     6     |  7      248     9       |
 | A248    5      7     |  1     248   9     |  2348   2348    6       |
 | A248    6      9     |  7     3     248   |  1      5       248     |
 +----------------------+--------------------+-------------------------+
 |  278-4 z237-4  358   |  6     9     248   |  238-4  1       23458   |
 |  6    yd249    1     |  5     248   3     | e2489   7       248     |
 |xE49-28 y2349   358   |BA248   7     1     |  6      23489   23458   |
 +----------------------+--------------------+-------------------------+
 |  3     z17     4     |  289   6     28    |  5      289     17      |
 |  5    zc19     6     |  3     248   7     |  289-4  2489    128-4   |
 |Db79     8      2     |Ca49    1     5     | a34-9   6       37      |
 +----------------------+--------------------+-------------------------+

3. (3=49)r9c47 - r9c1 = r8c2 - r5c2 = (9)r5c7 => -9r9c7
4. [RP(28):r6c4 = r1c4 - r1c23 = r23c1] = (4)r16c4 - (4=9)r9c4 - r9c1 = (9)r6c1 => -28 r6c1

5. (4=9)r6c1 - r56c2 = (917)r478c2 => -4 r4c2

6. Kraken row (4)r2c1578 (untagged)
(4)r2c1
(4)r2c5 - r3c6 = (4)r4c6
(4)r2c7 - (4=37)r9c79 - r9c1 = (7)r4c1
(4-3)r2c8 = r6c8 - (3=294)b4p578
=>-4r4c1

7. Kraken row (4)r2c1578 (untagged)
(4)r2c1 - (4=9)r6c1 - r9c1 = (9-4)r9c4 = (4)r9c7
(4)r2c5 - r3c6 = (4)r4c6
(4)r2c7
(4-3)r2c8 = r2c7 - (3=4)r9c7
=>-4r4c7

8. Kraken column (4)r1268c8 (untagged)
(4)r1c8 - r1c2 = r23c1 - (4=9)r6c1 - r9c1 = (9-4)r9c4 = (4)r9c7
(4-3)r2c8 = r2c7 - (3=4)r9c7
(4)r6c8 - (4=9)r6c1 - r9c1 = (9-4)r9c4 = (4)r9c7
(4)r8c8
=>-4r8c79

Code: Select all
 +---------------------+--------------------+-------------------------+
 |  1     234    38    |  248   5     6     |  7      248     9       |
 |  248   5      7     |  1     248   9     |  2348   2348    6       |
 |  248   6      9     |  7     3     248   |  1      5       248     |
 +---------------------+--------------------+-------------------------+
 |  278   237    358   |  6     9    f248   |  238    1      e23458   |
 |  6     249    1     |  5     28-4  3     |  2489   7       248     |
 |  49    2349   358   |  248   7     1     |  6      23489  e23458   |
 +---------------------+--------------------+-------------------------+
 |  3     17     4     |  289   6     28    |  5      289     17      |
 |  5     19     6     |  3    a4-28  7     |  289   b2489    128     |
 |  79    8      2     |  49    1     5     | c34     6      d37      |
 +---------------------+--------------------+-------------------------+

9. (4)r8c5 = r8c8 - (4=3)r9c7 - r9c9 = (35-4)r46c9 = r4c6 => -4 r5c5

10. Kraken cell (248)r1c8 (untagged)
(2)r1c8 - (r7c8 | r1c4) = (2)r7c46* & W-Wing [(8=2)r5c5 - r6c4*=*r7c4 - (2=8)r7c6]^
||
(8)r1c8 - (r7c8 | r1c4) = (8)r7c46^ & W-Wing [(2=8)r5c5 - r6c4*=*r7c4 - (8=2)r7c6]*
||
(4)r1c8 - r8c8 = (4)r8c5*^
=> -2*, -8^ r8c5; 13 placements
Presented as a net:
Hidden Text: Show
Code: Select all
         (2)r7c8 = (2)r7c46*
        /
(2)r1c8
 ||     \
 ||      (2)r1c4 = [W-Wing (8=2)r5c5 - r6c4*=*r7c4 - (2=8)r7c6]^
 ||
 ||      (8)r7c8 = (8)r7c46^
 ||     /
(8)r1c8
 ||     \
 ||      (8)r1c4 = [W-Wing (2=8)r5c5 - r6c4*=*r7c4 - (8=2)r7c6]*
 ||
(4)r1c8 - r8c8 = (4)r8c5*^
=> -2*, -8^ r8c5


Code: Select all
 +--------------------+-------------------+----------------------+
 |  1     234  c38    | y248   5    6     |  7    z248    9      |
 |Ab4-28  5     7     |  1   Df28   9     |vf238  u34-28  6      |
 |Bb248   6     9     |  7     3   C248   |  1     5     C248    |
 +--------------------+-------------------+----------------------+
 |wa28    7    d358   |  6     9   w248   |we238   1      2458   |
 |  6     24    1     |  5    C28   3     |  9     7     C248    |
 |  9     234   358   | x248   7    1     |  6     2348   2458   |
 +--------------------+-------------------+----------------------+
 |  3     1     4     |  28    6    28    |  5     9      7      |
 |  5     9     6     |  3     4    7     |  28   z28     1      |
 |  7     8     2     |  9     1    5     |  4     6      3      |
 +--------------------+-------------------+----------------------+

11. (8)r4c1 = r23c1 - (8=3)r1c3 - r4c3 = r4c7 - (3=28)r2c57 => -8 r2c1

12. (4)r2c1 = (4-8)r3c1 = [r3c6 = r3c9 - r5c9 = r5c5] - (8=2)r2c5 => -2 r2c1

13. (3)r2c8 = r2c7 - (3=284)r4c167 - r6c4 = r1c4 - (4=28)r18c8 =>-28r2c8; 3 placements

Code: Select all
 +-------------------+-------------------+--------------------+
 |  1   a23   a38    | d4-28  5    6     |  7    248   9      |
 |  4    5     7     |  1     28*  9     |  28   3     6      |
 | a28*  6     9     |  7     3   c248*  |  1    5     248    |
 +-------------------+-------------------+--------------------+
 | a28*  7     58    |  6     9  ba248   |  3    1     45-28  |
 |  6    24    1     |  5     28*  3     |  9    7     248*   |
 |  9    234   358   |  248   7    1     |  6    248   2458   |
 +-------------------+-------------------+--------------------+
 |  3    1     4     | a28    6   a28    |  5    9     7      |
 |  5    9     6     |  3     4    7     |  28   28    1      |
 |  7    8     2     |  9     1    5     |  4    6     3      |
 +-------------------+-------------------+--------------------+

14. [RP(28):r7c4 = r7c6 - r4c6* = r4c1 - r3c1 = r1c23] = (4)r4c6 - r3c6 = (4)r1c4 => -28 r1c4; 5 placements

15. RP(28):r5c9 = r5c5 - r2c5 = r3c6 - r3c1 = r4c1 => -28 r4c9; ste
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France


Return to Puzzles