The puzzles have the rectangle’s candidates are
labeled as (a)b (b),(c) and (d).
Number 1: On (4’s)
(4) Locked on bd
(4) Locked on cd
(7) Locked on cd
(d) can be made a (4)
(a) can be made a (4)
- Code: Select all
*--------------------------------------------------*
| 6 249 7 | 1 8 5 | 24a 3 49b |
| 3 459 459 | 69 2 7 | 46 8 1 |
| 29 1 8 | 69 4 3 | 256 7 59 |
|----------------+----------------+----------------|
| 489 789 49 | 47 5 6 | 3 1 2 |
| 24 27 1 | 47 3 9 | 8 5 6 |
| 5 3 6 | 2 1 8 | 47c 9 47d |
|----------------+----------------+----------------|
| 7 489 349 | 5 69 2 | 1 46 38 |
| 1 6 359 | 8 79 4 | 57 2 357 |
| 48 458 2 | 3 67 1 | 9 46 578 |
*--------------------------------------------------*
Number (2) On (7’s)
(4) Locked ab
(7) Locked on ab
(7) Locked on ac
(a) can be made a (7)
(d) can be made a (7)
- Code: Select all
*-----------*
*--------------------------------------------------*
| 6 249 7 | 1 8 5 | 24 3 49 |
| 3 459 459 | 69 2 7 | 46 8 1 |
| 29 1 8 | 69 4 3 | 256 7 59 |
|----------------+----------------+----------------|
| 489 789 49 | 47 5 6 | 3 1 2 |
| 24 27 1 | 47 3 9 | 8 5 6 |
| 5 3 6 | 2 1 8 | 47a 9 47b |
|----------------+----------------+----------------|
| 7 489 349 | 5 69 2 | 1 46 38 |
| 1 6 359 | 8 79 4 | 57c 2 357d |
| 48 458 2 | 3 67 1 | 9 46 578 |
*--------------------------------------------------*
Number(3) on (5’s)
(5) Locked on bd
(5) Locked on cd
(6) Locked on ab
- Code: Select all
*-----------------------------------------------------------*
| 2349 49 234 | 7 46 1 | 8 5 36 |
| 1 6 5 | 3 8 9 | 4 7 2 |
| 7 8 34 | 56 45 2 | 36 1 9 |
|-------------------+-------------------+-------------------|
| 456a 45 8 | 1 7 3 | 2 9 456b |
| 69 1479 1467 | 8 2 5 | 136 346 1346 |
| 25c 3 12 | 4 9 6 | 7 8 15d |
|-------------------+-------------------+-------------------|
| 8 2 136 | 56 135 4 | 9 36 7 |
| 346 14 9 | 2 136 7 | 5 346 8 |
| 3456 457 3467 | 9 36 8 | 136 2 1346 |
*-----------------------------------------------------------*
Number (4) on (4’s)
This is different. It has four locked candidates and I can figure out
That (d) equals 4. This I took this from a Forum sometime back but have no idea
which post it came from.
6 Locked on ab
7 Locked on ac
4 Locked on cd
4 locked on bd
- Code: Select all
*--------------------------------------------------------------------*
| 12 126 5 | 16 3 7 | 4 8 9 |
| 149 14679a 149 | 1469b 2 8 | 5 137 37 |
| 8 1479c 3 | 149d 19 5 | 2 17 6 |
|----------------------+----------------------+----------------------|
| 1349 8 7 | 2 5 149 | 6 349 34 |
| 5 1349 149 | 189 19 6 | 7 349 2 |
| 6 49 2 | 3 7 49 | 8 5 1 |
|----------------------+----------------------+----------------------|
| 7 159 6 | 159 4 3 | 19 2 8 |
| 1249 12459 149 | 1579 8 19 | 3 6 47 |
| 1349 1349 8 | 179 6 2 | 19 1479 5 |
*--------------------------------------------------------------------*
Is there any way to solve x-wings as in the first three examples? I could not find a common denominator for doing so. I must have misunderstood what I read about three strong links and would appreciate your comments and corrections about the use of three strong links.
Thanks.