.
Thanks for your solutions.
My purpose with this puzzle was to show how eleven replacement drastically simplifies its solution (allowing to find one in Z4+OR2W3).
It is also a second illustration of an argument I introduced here:
http://forum.enjoysudoku.com/triple-double-ser-10-9-te3-id-587982-t40527-9.htmlIf an ORk-relation based on an anti-tridagon pattern with k guardians is found and eleven replacement is later applied in some of the 4 blocks to the 3 digits of the anti-tridagon, then the ORk-relation remains valid in the modified puzzle.Note that I'm not using the general form of replacement that would try any triplet of trivalue cells in a line. I'm only using the automatic form associated with anti-tridagons: it tries replacement in only the (maximum) 4 blocks of the anti-tridagon that have the 3 candidates and only them in their 3 cells.
I've shown before that general replacement was (complexity-wise) a restricted form of T&E(2), but in the present case, it is still much more restricted. As a result, it's rationally more justified than the general form.
Note that an anti-tridagon is already present immediately after Singles and whips[1]:
- Code: Select all
OR4-anti-tridagon[12] for digits 1, 2 and 9 in blocks:
b2, with cells: r1c5, r2c6, r3c4
b3, with cells: r1c9, r2c7, r3c8
b8, with cells: r7c5, r8c6, r9c4
b9, with cells: r7c9, r8c8, r9c7
with 4 guardians: n5r1c5 n3r1c9 n7r2c6 n7r7c9
but SudoRules doesn''t detect it now, because the anti-tridagon detection rule has lower priority than Triplets.
Instead, we have the following:
- Code: Select all
hidden-pairs-in-a-row: r7{n3 n8}{c4 c6} ==> r7c6≠9, r7c6≠2, r7c6≠1, r7c4≠9, r7c4≠2, r7c4≠1
hidden-pairs-in-a-row: r3{n4 n6}{c3 c9} ==> r3c9≠9, r3c9≠2, r3c9≠1, r3c3≠9, r3c3≠7, r3c3≠2
hidden-single-in-a-row ==> r3c6=7
hidden-pairs-in-a-column: c9{n4 n6}{r2 r3} ==> r2c9≠9, r2c9≠3, r2c9≠2, r2c9≠1
hidden-triplets-in-a-row: r2{n4 n6 n7}{c3 c9 c1} ==> r2c3≠9, r2c3≠5, r2c3≠3, r2c3≠2, r2c1≠5, r2c1≠3, r2c1≠1
hidden-single-in-a-row ==> r2c8=3
+----------------+----------------+----------------+
! 135 1259 2359 ! 4 1259 6 ! 7 8 129 !
! 467 1259 467 ! 1259 8 129 ! 129 3 46 !
! 8 129 46 ! 129 3 7 ! 5 129 46 !
+----------------+----------------+----------------+
! 2 6 1 ! 3589 579 389 ! 4 579 379 !
! 35 7 358 ! 6 1259 4 ! 1289 1259 1239 !
! 9 4 358 ! 1235 1257 123 ! 128 6 1237 !
+----------------+----------------+----------------+
! 145 1259 2459 ! 38 129 38 ! 6 1279 1279 !
! 16 8 269 ! 7 4 129 ! 3 129 5 !
! 17 3 279 ! 129 6 5 ! 129 4 8 !
+----------------+----------------+----------------+
OR2-anti-tridagon[12] for digits 1, 2 and 9 in blocks:
b2, with cells: r1c5, r2c6, r3c4
b3, with cells: r1c9, r2c7, r3c8
b8, with cells: r7c5, r8c6, r9c4
b9, with cells: r7c9, r8c8, r9c7
with 2 guardians: n5r1c5 n7r7c9
Trid-OR2-whip[2]: OR2{{n5r1c5 | n7r7c9}} - r6n7{c9 .} ==> r6c5≠5finned-x-wing-in-rows: n5{r6 r2}{c4 c3} ==> r1c3≠5
Trid-OR2-whip[3]: OR2{{n5r1c5 | n7r7c9}} - b6n7{r4c9 r4c8} - r4n5{c8 .} ==> r5c5≠5- Code: Select all
+----------------+----------------+----------------+
! 135 1259 239 ! 4 1259 6 ! 7 8 129 !
! 467 1259 467 ! 1259 8 129 ! 129 3 46 !
! 8 129 46 ! 129 3 7 ! 5 129 46 !
+----------------+----------------+----------------+
! 2 6 1 ! 3589 579 389 ! 4 579 379 !
! 35 7 358 ! 6 129 4 ! 1289 1259 1239 !
! 9 4 358 ! 1235 127 123 ! 128 6 1237 !
+----------------+----------------+----------------+
! 145 1259 2459 ! 38 129 38 ! 6 1279 1279 !
! 16 8 269 ! 7 4 129 ! 3 129 5 !
! 17 3 279 ! 129 6 5 ! 129 4 8 !
+----------------+----------------+----------------+
In SudoRules, if eleven replacement is selected in the configuration file, its priority is always lower than any regular or ORk chain.
In this solution, the active rules were SFin+W8+OR5W8. It means that no other whip or ORk-chains of length ≤ 8 was available at this point, when replacement takes place.
- Code: Select all
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 8
+----------------------+----------------------+----------------------+
! 12359 1259 1239 ! 4 1259 6 ! 7 8 129 !
! 467 1259 467 ! 1259 8 129 ! 129 3 46 !
! 8 129 46 ! 129 3 7 ! 5 129 46 !
+----------------------+----------------------+----------------------+
! 129 6 129 ! 123589 12579 12389 ! 4 12579 12379 !
! 35 7 358 ! 6 129 4 ! 1289 1259 1239 !
! 129 4 358 ! 12359 1279 1239 ! 1289 6 12379 !
+----------------------+----------------------+----------------------+
! 12459 1259 12459 ! 38 9 38 ! 6 1279 1279 !
! 1269 8 1269 ! 7 4 2 ! 3 129 5 !
! 1279 3 1279 ! 1 6 5 ! 129 4 8 !
+----------------------+----------------------+----------------------+
whip[1]: c2n9{r1 .} ==> r1c1≠9, r1c3≠9
whip[1]: r5n9{c7 .} ==> r4c9≠9, r4c8≠9, r6c7≠9, r6c9≠9
finned-x-wing-in-rows: n1{r3 r8}{c8 c2} ==> r7c2≠1
whip[1]: c2n1{r1 .} ==> r1c1≠1, r1c3≠1
z-chain[3]: b4n1{r4c1 r6c1} - c6n1{r6 r2} - c7n1{r2 .} ==> r4c8≠1, r4c9≠1
z-chain[3]: r5n1{c7 c5} - b2n1{r1c5 r2c6} - c7n1{r2 .} ==> r6c9≠1
t-whip[3]: r5c5{n2 n1} - b6n1{r5c7 r6c7} - c7n8{r6 .} ==> r5c7≠2
+----------------------+----------------------+----------------------+
! 235 1259 23 ! 4 1259 6 ! 7 8 129 !
! 467 1259 467 ! 1259 8 129 ! 129 3 46 !
! 8 129 46 ! 129 3 7 ! 5 129 46 !
+----------------------+----------------------+----------------------+
! 129 6 129 ! 123589 12579 12389 ! 4 257 237 !
! 35 7 358 ! 6 129 4 ! 189 1259 1239 !
! 129 4 358 ! 12359 1279 1239 ! 128 6 237 !
+----------------------+----------------------+----------------------+
! 12459 259 12459 ! 38 9 38 ! 6 1279 1279 !
! 1269 8 1269 ! 7 4 2 ! 3 129 5 !
! 1279 3 1279 ! 1 6 5 ! 129 4 8 !
+----------------------+----------------------+----------------------+
I didn't check if the following OR2-whip[3] is really necessary*; but it's one more illustration of persistency of the ORk-relations wrt replacement restricted to the anti-tridagon blocks and digits:
[Edit:] (*) it is not. Without it, a solution can be found in Z5 instead of Z4.
Trid-OR2-whip[3]: OR2{{n7r7c9 | n5r1c5}} - b1n5{r1c2 r2c2} - r7c2{n5 .} ==> r7c9≠2- Code: Select all
biv-chain[4]: c8n5{r5 r4} - c8n7{r4 r7} - r7c9{n7 n1} - r8c8{n1 n9} ==> r5c8≠9
z-chain[4]: c7n1{r5 r2} - b2n1{r2c6 r1c5} - c5n5{r1 r4} - c8n5{r4 .} ==> r5c8≠1
hidden-triplets-in-a-block: b6{n1 n8 n9}{r5c9 r6c7 r5c7} ==> r6c7≠2, r5c9≠3, r5c9≠2
whip[1]: r5n3{c1 .} ==> r6c3≠3
t-whip[2]: r5n2{c5 c8} - c9n2{r4 .} ==> r1c5≠2
whip[1]: c5n2{r6 .} ==> r6c4≠2, r4c4≠2
biv-chain[3]: c4n2{r3 r2} - r2n5{c4 c2} - r7c2{n5 n2} ==> r3c2≠2
biv-chain[3]: r2c6{n9 n1} - r1c5{n1 n5} - r2n5{c4 c2} ==> r2c2≠9
z-chain[4]: b9n1{r8c8 r7c9} - r5c9{n1 n9} - r1n9{c9 c2} - r3c2{n9 .} ==> r3c8≠1
w1-tte
Using the assumption of uniqueness, the puzzle can be solved in W8+OR2W8 (but it's more complicated than with replacement):
hidden-pairs-in-a-row: r7{n3 n8}{c4 c6} ==> r7c6≠9, r7c6≠2, r7c6≠1, r7c4≠9, r7c4≠2, r7c4≠1
************ BEWARE: ASSUMPTION OF UNIQUENESS USED ******************
vertical unique rectangle type 4 in cells r7c4, r7c6, r4c4 and r4c6 ==> r4c4≠3, r4c6≠3
whip[1]: r4n3{c9 .} ==> r5c8≠3, r5c9≠3, r6c9≠3
whip[1]: r5n3{c3 .} ==> r6c3≠3
hidden-pairs-in-a-row: r3{n4 n6}{c3 c9} ==> r3c9≠9, r3c9≠2, r3c9≠1, r3c3≠9, r3c3≠7, r3c3≠2
hidden-single-in-a-row ==> r3c6=7
hidden-pairs-in-a-column: c9{n4 n6}{r2 r3} ==> r2c9≠9, r2c9≠3, r2c9≠2, r2c9≠1
************ BEWARE: ASSUMPTION OF UNIQUENESS USED ******************
horizontal unique rectangle type 1 in cells r3c9, r3c3, r2c9 and r2c3 ==> r2c3≠n6, r2c3≠4
hidden-pairs-in-a-block: b1{n4 n6}{r2c1 r3c3} ==> r2c1≠7, r2c1≠5, r2c1≠3, r2c1≠1
hidden-single-in-a-block ==> r2c3=7
hidden-single-in-a-row ==> r2c8=3
hidden-single-in-a-column ==> r4c9=3
hidden-single-in-a-block ==> r9c1=7
+----------------+----------------+----------------+
! 135 1259 2359 ! 4 1259 6 ! 7 8 129 !
! 46 1259 7 ! 1259 8 129 ! 129 3 46 !
! 8 129 46 ! 129 3 7 ! 5 129 46 !
+----------------+----------------+----------------+
! 2 6 1 ! 589 579 89 ! 4 579 3 !
! 35 7 358 ! 6 1259 4 ! 1289 1259 129 !
! 9 4 58 ! 1235 1257 123 ! 128 6 127 !
+----------------+----------------+----------------+
! 145 1259 2459 ! 38 129 38 ! 6 1279 1279 !
! 16 8 269 ! 7 4 129 ! 3 129 5 !
! 7 3 29 ! 129 6 5 ! 129 4 8 !
+----------------+----------------+----------------+
OR2-anti-tridagon[12] for digits 1, 2 and 9 in blocks:
b2, with cells: r1c5, r2c6, r3c4
b3, with cells: r1c9, r2c7, r3c8
b8, with cells: r7c5, r8c6, r9c4
b9, with cells: r7c9, r8c8, r9c7
with 2 guardians: n5r1c5 n7r7c9
Trid-OR2-whip[2]: OR2{{n5r1c5 | n7r7c9}} - r6n7{c9 .} ==> r6c5≠5
finned-x-wing-in-rows: n5{r6 r2}{c4 c3} ==> r1c3≠5
Trid-OR2-whip[3]: OR2{{n5r1c5 | n7r7c9}} - b6n7{r6c9 r4c8} - r4n5{c8 .} ==> r5c5≠5
whip[6]: r9n1{c4 c7} - r2n1{c7 c2} - r2n5{c2 c4} - r6n5{c4 c3} - r5n5{c3 c8} - c8n1{r5 .} ==> r3c4≠1
whip[7]: r2n5{c2 c4} - r6n5{c4 c3} - r5c1{n5 n3} - r1c1{n3 n1} - b2n1{r1c5 r2c6} - b3n1{r2c7 r3c8} - r8n1{c8 .} ==> r1c2≠5
whip[7]: c2n9{r3 r7} - c9n9{r7 r5} - c5n9{r5 r4} - r4n7{c5 c8} - c8n5{r4 r5} - r5c1{n5 n3} - r1n3{c1 .} ==> r1c3≠9
whip[1]: c3n9{r9 .} ==> r7c2≠9
Trid-OR2-whip[7]: r3c4{n2 n9} - r9c4{n9 n1} - r2c4{n1 n5} - OR2{{n5r1c5 | n7r7c9}} - r6c9{n7 n1} - c6n1{r6 r2} - c7n1{r2 .} ==> r6c4≠2
whip[5]: b2n5{r1c5 r2c4} - c4n2{r2 r9} - c4n1{r9 r6} - r6n3{c4 c6} - c6n2{r6 .} ==> r1c5≠2
Trid-OR2-ctr-whip[8]: r9n1{c7 c4} - c6n1{r8 r6} - c5n1{r6 r1} - b2n5{r1c5 r2c4} - c4n2{r2 r3} - b3n2{r3c8 r1c9} - r6c9{n2 n7} - OR2{{n7r7c9 n5r1c5 | .}} ==> r2c7≠1
whip[8]: c8n7{r7 r4} - c8n5{r4 r5} - b4n5{r5c3 r6c3} - r6n8{c3 c7} - c7n1{r6 r5} - c9n1{r5 r1} - c5n1{r1 r6} - r6n7{c5 .} ==> r7c8≠1
whip[8]: r2n5{c4 c2} - r2n1{c2 c6} - b2n2{r2c6 r3c4} - r2n2{c4 c7} - r9n2{c7 c3} - r7c2{n2 n1} - r8n1{c1 c8} - r3n1{c8 .} ==> r2c4≠9
whip[8]: c8n5{r5 r4} - r4n7{c8 c5} - c5n5{r4 r1} - c5n9{r1 r7} - b9n9{r7c9 r9c7} - r9n1{c7 c4} - r2c4{n1 n2} - r2c7{n2 .} ==> r5c8≠9
whip[8]: c3n2{r9 r1} - c3n3{r1 r5} - r5c1{n3 n5} - c8n5{r5 r4} - b6n7{r4c8 r6c9} - c9n2{r6 r5} - b6n9{r5c9 r5c7} - r5n8{c7 .} ==> r7c2≠2
whip[1]: b7n2{r9c3 .} ==> r1c3≠2
naked-single ==> r1c3=3
hidden-single-in-a-column ==> r5c1=3
whip[1]: b4n5{r6c3 .} ==> r7c3≠5
Trid-OR2-whip[3]: OR2{{n7r7c9 | n5r1c5}} - r2n5{c4 c2} - r7c2{n5 .} ==> r7c9≠1
biv-chain[4]: c8n5{r5 r4} - c5n5{r4 r1} - r1c1{n5 n1} - b3n1{r1c9 r3c8} ==> r5c8≠1
biv-chain[3]: r5c8{n2 n5} - c3n5{r5 r6} - r6n8{c3 c7} ==> r6c7≠2
t-whip[4]: b3n1{r3c8 r1c9} - r1c1{n1 n5} - r1c5{n5 n9} - r3c4{n9 .} ==> r3c8≠2
biv-chain[3]: b9n1{r9c7 r8c8} - r3c8{n1 n9} - r2c7{n9 n2} ==> r9c7≠2
z-chain[4]: r3c4{n2 n9} - r9c4{n9 n1} - r9c7{n1 n9} - r2c7{n9 .} ==> r2c4≠2
biv-chain[4]: r6c7{n8 n1} - r9n1{c7 c4} - r2c4{n1 n5} - r6n5{c4 c3} ==> r6c3≠8
naked-single ==> r6c3=5
naked-single ==> r5c3=8
hidden-single-in-a-block ==> r6c7=8
hidden-single-in-a-row ==> r5c8=5
whip[1]: c8n2{r8 .} ==> r7c9≠2
t-whip[6]: c7n1{r9 r5} - c9n1{r6 r1} - r1c1{n1 n5} - r1c5{n5 n9} - r5c5{n9 n2} - r7c5{n2 .} ==> r9c4≠1
hidden-single-in-a-row ==> r9c7=1
hidden-single-in-a-column ==> r3c8=1
naked-pairs-in-a-column: c4{r3 r9}{n2 n9} ==> r4c4≠9
biv-chain[3]: r3c2{n9 n2} - r1n2{c2 c9} - b3n9{r1c9 r2c7} ==> r2c2≠9
biv-chain[4]: b8n1{r8c6 r7c5} - r7c2{n1 n5} - r2n5{c2 c4} - c4n1{r2 r6} ==> r6c6≠1
biv-chain[3]: c6n1{r8 r2} - b2n2{r2c6 r3c4} - c4n9{r3 r9} ==> r8c6≠9
finned-x-wing-in-columns: n9{c6 c7}{r2 r4} ==> r4c8≠9
naked-single ==> r4c8=7
hidden-single-in-a-block ==> r6c5=7
hidden-single-in-a-column ==> r7c9=7
whip[1]: b6n9{r5c9 .} ==> r5c5≠9
biv-chain[2]: b5n2{r6c6 r5c5} - c7n2{r5 r2} ==> r2c6≠2
hidden-single-in-a-block ==> r3c4=2
naked-single ==> r3c2=9
naked-single ==> r9c4=9
naked-single ==> r9c3=2
naked-pairs-in-a-column: c5{r5 r7}{n1 n2} ==> r1c5≠1
whip[1]: b2n1{r2c6 .} ==> r2c2≠1
biv-chain[4]: r5c7{n2 n9} - r2n9{c7 c6} - c6n1{r2 r8} - c6n2{r8 r6} ==> r6c9≠2, r5c5≠2
stte