eleven wrote:Nice solution (much better than what i found).
Ditto. Very nice indeed! Good job,
Cenoman!
In the first step i can't see, why you didn't eliminate 29 also from r4c3.
Me neither. With those two additional eliminations the first step gets 9 placements and ends up here:
- Code: Select all
.-----------.-----------------.-----------------.
| 4 5 3 | 129 129 8 | 6 7 19 |
| 8 9 1 | 4 6 7 | 5 3 2 |
| 2 6 7 | 3 5 19 | 149 189 1489 |
:-----------+-----------------+-----------------:
| 7 3 4 | 5 1289 129 | 19 1289 6 |
| 1 28 9 | 7 28 6 | 3 4 5 |
| 5 28 6 | 1289 4 3 | 7 1289 189 |
:-----------+-----------------+-----------------:
| 3 147 2 | 6 179 5 | 8 19 1479 |
| 6 17 8 | 19 3 4 | 2 5 179 |
| 9 147 5 | 128 1278 12 | 14 6 3 |
'-----------'-----------------'-----------------'
From there we can use step 3 directly. So, Cenoman's solution is actually two steps, and quite simple ones too. I bet that finding anything better is quite unlikely here.
For comparison, here's my ugly p&p solution:
- Code: Select all
.---------------------------.--------------------.--------------------.
| 4 5 3 | 129 129 8 | 6 7 19 |
| 8 9 1 | 4 6 7 | 5 3 2 |
| 27 6 27 | 3 5 19 | d149 189 e1489 |
:---------------------------+--------------------+--------------------:
| h2(7)-9 3 h2(4)78-9 | 5 h12489 129 | 19 1289 6 |
| 1 a28 a28(9) | 7 g289 6 | 3 4 5 |
| 5 a248 6 | g1289 g12489 3 | 7 1289 f189 |
:---------------------------+--------------------+--------------------:
| 3 1247 249 | 6 1279 5 | 8 19 1479 |
| 6 178 89 | 189 3 4 | 2 5 179 |
| 29 b12478 5 | 1289 12789 129 | c149 6 3 |
'---------------------------'--------------------'--------------------'
1. (9=28*4)b4p658 - (4)r9c2 = r9c7 - r3c7 = (4-8)r3c9 = r6c9 - b5p78*5 = (847)r4c531 => -9 r4c13 (3 placements)
When I chose to use that move I assumed it would be more effective. I would have tried to find something else if I'd realized beforehand that it wasn't that great, but there's no going back in p&p solving.
- Code: Select all
.----------------.------------------.-----------------.
| 4 5 3 | 129 129 8 | 6 7 19 |
| 8 9 1 | 4 6 7 | 5 3 2 |
| 27+ 6 27+ | 3 5 19 | 149 189 1489 |
:----------------+------------------+-----------------:
| 27+ 3 27+4 | 5 12489 129 | 19 1289 6 |
| 1 28 9 | 7 28 6 | 3 4 5 |
| 5 248 6 | 1289 12489 3 | 7 1289 189 |
:----------------+------------------+-----------------:
| 3 1247 24 | 6 1279 5 | 8 19 1479 |
| 6 17 8 | 19 3 4 | 2 5 179 |
| 9 1247 5 | 128 1278 12 | 14 6 3 |
'----------------'------------------'-----------------'
2. UR Type 1 (27)r34c13 => -27 r4c3 (6 placements)
- Code: Select all
.------------.------------------.----------------------.
| 4 5 3 | 129 129 8 | 6 7 19 |
| 8 9 1 | 4 6 7 | 5 3 2 |
| 2 6 7 | 3 5 19 | 149 189 1489 |
:------------+------------------+----------------------:
| 7 3 4 | 5 1289 129 | f19 1289 6 |
| 1 28 9 | 7 28 6 | 3 4 5 |
| 5 28 6 | d1289 4 3 | 7 e1289 e189 |
:------------+------------------+----------------------:
| 3 147 2 | 6 179 5 | 8 19 a1(7)9-4 |
| 6 c17 8 | c19 3 4 | 2 5 b179 |
| 9 147 5 | 128 1278 12 | f14 6 3 |
'------------'------------------'----------------------'
3. (7)r7c9 = r8c9 - (7=19)r8c24 - (9)r6c4 = r6c89 - (9=14)r49c7 => -4 r7c9 (13 placements)
- Code: Select all
.----------.-----------------.-----------------.
| 4 5 3 | 2 19 8 | 6 7 19 |
| 8 9 1 | 4 6 7 | 5 3 2 |
| 2 6 7 | 3 5 19 | 19 8 4 |
:----------+-----------------+-----------------:
| 7 3 4 | 5 8 19 | 19 2 6 |
| 1 8 9 | 7 2 6 | 3 4 5 |
| 5 2 6 | *19 4 3 | 7 *19 8 |
:----------+-----------------+-----------------:
| 3 4 2 | 6 7-19 5 | 8 *(19) 179 |
| 6 17 8 | *(19) 3 4 | 2 5 7-19 |
| 9 17 5 | 8 17 2 | 4 6 3 |
'----------'-----------------'-----------------'
4. Remote Pair (19)r8c4,r7c8 => -19 r7c5,r8c9; stte