Since
Draco started the thread, I hope it's okay to add to it.
I've added some logic to my chains routine to (hopefully) help me decide which chains are more productive than others. However, I often run into a wall where multiple chains are needed and none stand out. For example:
- Code: Select all
+-----------------------+
| . . 5 | . . . | . . . |
| . 9 . | 5 2 . | . 4 7 |
| 6 . . | . . 4 | . 8 . |
|-------+-------+-------|
| . 5 . | . 1 . | . 2 4 |
| . 6 . | 2 . 5 | . . . |
| . . 2 | . 7 3 | . . . |
|-------+-------+-------|
| . . . | . . . | . . . |
| . 1 7 | 3 . . | . 6 . |
| . 2 . | 4 . . | . . 5 |
+-----------------------+
- Code: Select all
+-----------------------------------------------------------------------+
| 2 4 5 | 178 368 1678 | 1369 139 169 |
| 13 9 8 | 5 2 16 | 136 4 7 |
| 6 7 13 | 19 39 4 | 5 8 2 |
|-----------------------+-----------------------+-----------------------|
| 37 5 39 | 68 1 89 | 679 2 4 |
| 17 6 19 | 2 4 5 | 8 79 3 |
| 4 8 2 | 69 7 3 | 169 5 169 |
|-----------------------+-----------------------+-----------------------|
| 589 3 4 | 1789 5689 16789 | 2 179 189 |
| 589 1 7 | 3 589 2 | 4 6 89 |
| 89 2 6 | 4 89 17 | 137 137 5 |
+-----------------------------------------------------------------------+
- Code: Select all
{ 1} -8r4c4 8r4c6 9r7c6 8r9c5 [chain__5] <> 8 [r7c4]
{ 5} -3r2c7 3r2c1 7r4c1 7r9c7 3r9c8 [chain__5] <> 3 [r1c8],[r9c7]
{ 13} -6r1c9 6r6c9 9r6c4 1r3c4 6r2c6 [chain__5] <> 6 [r1c56],[r2c7]
{ 1} -9r3c4 1r3c4 1r5c3 9r4c3 9r7c6 [chain__5] <> 9 [r7c4]
{ 1} -9r4c6 9r6c4 1r3c4 1r5c3 9r5c8 [chain__5] <> 9 [r4c7]
{ 1} -6r7c5 6r1c5 6r6c9 9r6c4 9r3c5 -9r7c5 [chain__2] <> 9 [r7c5]
{ 1} -3r9c8 3r1c8 3r2c1 1r5c1 7r5c8 -7r9c8 [chain__2] <> 7 [r9c8]
{ 1} -6r1c9 6r6c9 9r6c4 9r7c6 9r8c9 -9r1c9 [chain__2] <> 9 [r1c9]
{ 15} -1r3c4 1r3c3 1r5c1 7r4c1 7r9c7 1r9c6 [chain__5] <> 1 [r12c6],[r7c4]
{ 10} -6r2c6 6r2c7 6r4c4 8r4c6 9r7c6 6r7c5 [chain__5] <> 6 [r1c5],[r7c6]
{ 2} 1r9c8 7r9c6 7r4c7 3r4c1 3r2c7 3r9c8 [chain__9] <> 1 [r9c8]
{ 1} 8r7c5 9r9c5 9r3c4 6r6c4 6r1c9 6r7c5 [chain__9] <> 8 [r7c5]
{ 1} -9r7c6 9r4c6 3r4c3 7r4c1 7r9c7 1r9c6 -1r7c6 [chain__2] <> 1 [r7c6]
{ 1} -5r8c5 5r7c5 6r1c5 6r6c9 9r6c4 9r3c5 -9r8c5 [chain__2] <> 9 [r8c5]
{ 1} -5r7c1 5r7c5 6r1c5 6r6c9 9r6c4 9r7c6 -9r7c1 [chain__2] <> 9 [r7c1]
{ 1} 6r1c7 6r4c4 9r6c4 1r3c4 1r5c3 9r5c8 9r1c7 [chain__9] <> 6 [r1c7]
{ 1} 8r8c5 9r9c5 9r3c4 6r6c4 6r1c9 6r7c5 5r8c5 [chain__9] <> 8 [r8c5]
_____________________________________________________________________________________
Note: the
chain__5 chains are really forcing chains, but of the most basic format where one implication stream is trivial. Otherwise, I'm not using forcing chains to resolve the puzzle.
What's the smallest number of chains
from this list that will render the puzzle solvable through Singles?
[Edit: added specific chains and added/reworded last paragraphs.]