25*25 pandiagonal sudoku

Everything about Sudoku that doesn't fit in one of the other sections

25*25 pandiagonal sudoku

Postby dukuso » Wed Apr 05, 2006 12:17 am

in case someone is interested, Christian Boyer sent me a pandiagonal 25*25 sudoku.

see:http://www.multimagie.com
then "news"
then scroll dowm to the mathematics today article

here is it in computer-readable form:

2,25,18,11,9,3,21,19,12,10,4,22,20,13,6,5,23,16,14,7,1,24,17,15,8
14,7,5,23,16,15,8,1,24,17,11,9,2,25,18,12,10,3,21,19,13,6,4,22,20
21,19,12,10,3,22,20,13,6,4,23,16,14,7,5,24,17,15,8,1,25,18,11,9,2
8,1,24,17,15,9,2,25,18,11,10,3,21,19,12,6,4,22,20,13,7,5,23,16,14
20,13,6,4,22,16,14,7,5,23,17,15,8,1,24,18,11,9,2,25,19,12,10,3,21
4,22,20,13,6,5,23,16,14,7,1,24,17,15,8,2,25,18,11,9,3,21,19,12,10
11,9,2,25,18,12,10,3,21,19,13,6,4,22,20,14,7,5,23,16,15,8,1,24,17
23,16,14,7,5,24,17,15,8,1,25,18,11,9,2,21,19,12,10,3,22,20,13,6,4
10,3,21,19,12,6,4,22,20,13,7,5,23,16,14,8,1,24,17,15,9,2,25,18,11
17,15,8,1,24,18,11,9,2,25,19,12,10,3,21,20,13,6,4,22,16,14,7,5,23
1,24,17,15,8,2,25,18,11,9,3,21,19,12,10,4,22,20,13,6,5,23,16,14,7
13,6,4,22,20,14,7,5,23,16,15,8,1,24,17,11,9,2,25,18,12,10,3,21,19
25,18,11,9,2,21,19,12,10,3,22,20,13,6,4,23,16,14,7,5,24,17,15,8,1
7,5,23,16,14,8,1,24,17,15,9,2,25,18,11,10,3,21,19,12,6,4,22,20,13
19,12,10,3,21,20,13,6,4,22,16,14,7,5,23,17,15,8,1,24,18,11,9,2,25
3,21,19,12,10,4,22,20,13,6,5,23,16,14,7,1,24,17,15,8,2,25,18,11,9
15,8,1,24,17,11,9,2,25,18,12,10,3,21,19,13,6,4,22,20,14,7,5,23,16
22,20,13,6,4,23,16,14,7,5,24,17,15,8,1,25,18,11,9,2,21,19,12,10,3
9,2,25,18,11,10,3,21,19,12,6,4,22,20,13,7,5,23,16,14,8,1,24,17,15
16,14,7,5,23,17,15,8,1,24,18,11,9,2,25,19,12,10,3,21,20,13,6,4,22
5,23,16,14,7,1,24,17,15,8,2,25,18,11,9,3,21,19,12,10,4,22,20,13,6
12,10,3,21,19,13,6,4,22,20,14,7,5,23,16,15,8,1,24,17,11,9,2,25,18
24,17,15,8,1,25,18,11,9,2,21,19,12,10,3,22,20,13,6,4,23,16,14,7,5
6,4,22,20,13,7,5,23,16,14,8,1,24,17,15,9,2,25,18,11,10,3,21,19,12
18,11,9,2,25,19,12,10,3,21,20,13,6,4,22,16,14,7,5,23,17,15,8,1,24
dukuso
 
Posts: 479
Joined: 25 June 2005

re: 25-square pandiagonal SuDoku

Postby Pat » Fri May 12, 2006 8:42 am

dukuso wrote:Christian Boyer sent me a pandiagonal 25-square SuDoku.


thanks, dukuso!


here are the links:
multimagie →
Smallest possible pandiagonal SuDoku ( Mathematics Today, April 2006 )
User avatar
Pat
 
Posts: 4056
Joined: 18 July 2005

Postby udosuk » Fri May 12, 2006 3:16 pm

Excellent!:D

Now it remains to see how many clues do we need in the minimal puzzle grid...

If it's unique than we only need 2 clues...
udosuk
 
Posts: 2698
Joined: 17 July 2005


Return to General