totuan wrote:Just curious, how yzfwsf’s & denis’s solvers solve this one?
mith’s list #500904
- Code: Select all
1.345.7.9...1.9.......37.512.6.......1..73.....8..........95..4.9.34.5...4.7.19.3
500904;30;3;11.1;11.1;10.5;DCFC+MFC
Easy
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 1 268 3 ! 4 5 268 ! 7 268 9 !
! 45678 25678 2457 ! 1 268 9 ! 23468 23468 268 !
! 4689 268 249 ! 268 3 7 ! 2468 5 1 !
+-------------------------+-------------------------+-------------------------+
! 2 357 6 ! 589 18 48 ! 1348 134789 578 !
! 459 1 459 ! 25689 7 3 ! 2468 24689 2568 !
! 34579 357 8 ! 2569 126 246 ! 12346 1234679 2567 !
+-------------------------+-------------------------+-------------------------+
! 3678 23678 127 ! 268 9 5 ! 1268 12678 4 !
! 678 9 127 ! 3 4 268 ! 5 12678 2678 !
! 568 4 25 ! 7 268 1 ! 9 268 3 !
+-------------------------+-------------------------+-------------------------+
190 candidates
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 2, 6 and 8 in 3 cells r7c4, r9c5 and r8c6,
the resolution state is:
- Code: Select all
+----------------------------+----------------------------+----------------------------+
! 1 268 3 ! 4 5 268 ! 7 268 9 !
! 452687 26857 268457 ! 1 268 9 ! 26834 26834 268 !
! 42689 268 26849 ! 268 3 7 ! 2684 5 1 !
+----------------------------+----------------------------+----------------------------+
! 268 357 268 ! 52689 1268 4268 ! 134268 13472689 57268 !
! 459 1 459 ! 26859 7 3 ! 2684 26849 2685 !
! 34579 357 268 ! 26859 1268 2684 ! 126834 12683479 26857 !
+----------------------------+----------------------------+----------------------------+
! 32687 26837 12687 ! 2 9 5 ! 1268 12687 4 !
! 2687 9 12687 ! 3 4 8 ! 5 12687 2687 !
! 5268 4 2685 ! 7 6 1 ! 9 268 3 !
+----------------------------+----------------------------+----------------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
whip[1]: r5n2{c9 .} ==> r6c9≠2, r4c7≠2, r4c8≠2, r4c9≠2, r6c7≠2, r6c8≠2
whip[1]: c2n2{r3 .} ==> r3c3≠2, r2c1≠2, r2c3≠2, r3c1≠2
finned-x-wing-in-rows: n8{r1 r9}{c8 c2} ==> r7c2≠8
whip[1]: c2n8{r3 .} ==> r2c1≠8, r2c3≠8, r3c1≠8, r3c3≠8
z-chain[3]: b4n8{r4c3 r6c3} - c5n8{r6 r2} - c9n8{r2 .} ==> r4c7≠8, r4c8≠8
z-chain[3]: r5n8{c9 c4} - c5n8{r4 r2} - c9n8{r2 .} ==> r6c7≠8, r6c8≠8
z-chain[4]: r2c5{n2 n8} - r2c9{n8 n6} - r1c8{n6 n8} - r9c8{n8 .} ==> r2c8≠2
z-chain[4]: b2n8{r2c5 r3c4} - b2n6{r3c4 r1c6} - r1c8{n6 n2} - r9c8{n2 .} ==> r2c8≠8
z-chain[5]: r9c8{n8 n2} - r1c8{n2 n6} - b2n6{r1c6 r3c4} - b2n8{r3c4 r2c5} - c9n8{r2 .} ==> r5c8≠8
t-whip[5]: c9n8{r6 r2} - r2c5{n8 n2} - r1c6{n2 n6} - r1c8{n6 n2} - c7n2{r3 .} ==> r5c7≠8
whip[1]: b6n8{r6c9 .} ==> r2c9≠8
biv-chain[3]: r2c9{n6 n2} - r2c5{n2 n8} - r3c4{n8 n6} ==> r3c7≠6
z-chain[4]: r9c8{n2 n8} - r1c8{n8 n6} - r2c9{n6 n2} - b9n2{r8c9 .} ==> r5c8≠2
biv-chain[4]: r3c4{n6 n8} - r5n8{c4 c9} - r5n2{c9 c7} - r3n2{c7 c2} ==> r3c2≠6
biv-chain[3]: r3c2{n2 n8} - r3c4{n8 n6} - r1c6{n6 n2} ==> r1c2≠2
biv-chain[3]: r1c2{n8 n6} - r1c6{n6 n2} - r2c5{n2 n8} ==> r2c2≠8
z-chain[4]: r5n6{c9 c4} - c6n6{r4 r1} - r1n2{c6 c8} - r2c9{n2 .} ==> r6c9≠6
z-chain[4]: r5n6{c9 c4} - c6n6{r6 r1} - r1n2{c6 c8} - r2c9{n2 .} ==> r4c9≠6
z-chain[4]: r2c9{n2 n6} - r1c8{n6 n8} - c2n8{r1 r3} - r3n2{c2 .} ==> r2c7≠2
t-whip[4]: r2c9{n6 n2} - r3n2{c7 c2} - c2n8{r3 r1} - r1c8{n8 .} ==> r2c8≠6, r2c7≠6
t-whip[5]: r5n6{c9 c4} - c6n6{r6 r1} - b3n6{r1c8 r2c9} - c2n6{r2 r7} - b9n6{r7c7 .} ==> r4c8≠6, r6c8≠6
whip[5]: c7n6{r6 r7} - c9n6{r8 r2} - c2n6{r2 r1} - r1n8{c2 c8} - b9n8{r7c8 .} ==> r5c8≠6
naked-triplets-in-a-row: r5{c1 c3 c8}{n9 n5 n4} ==> r5c9≠5, r5c7≠4, r5c4≠9, r5c4≠5
w1-tte