.
hidden-pairs-in-a-column: c5{n1 n9}{r7 r9} ==> r9c5≠4, r9c5≠3, r7c5≠8, r7c5≠3
whip[1]: b8n3{r8c6 .} ==> r8c1≠3, r8c2≠3, r8c3≠3, r8c8≠3
whip[1]: b8n8{r8c6 .} ==> r8c1≠8, r8c2≠8, r8c3≠8
whip[1]: r9n4{c3 .} ==> r8c1≠4, r8c2≠4, r8c3≠4
hidden-pairs-in-a-column: c4{n2 n9}{r5 r6} ==> r6c4≠8, r6c4≠4, r6c4≠3, r5c4≠8, r5c4≠4, r5c4≠3, r5c4≠1
singles ==> r5c6=1, r2c4=1, r3c8=1
whip[1]: r3n9{c2 .} ==> r1c2≠9
hidden-pairs-in-a-block: b1{n6 n9}{r3c1 r3c2} ==> r3c2≠8, r3c2≠4, r3c2≠3, r3c1≠8, r3c1≠4, r3c1≠3
- Code: Select all
OR2-anti-tridagon[12] for digits 4, 8 and 3 in blocks:
b1, with cells (marked #): r1c2, r2c1, r3c3
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r4c2, r6c1, r5c3
b5, with cells (marked #): r4c4, r6c6, r5c5
with 2 guardians (in cells marked @): n2r1c2 n5r5c3
+----------------------+----------------------+----------------------+
! 1 2348#@ 2348 ! 348# 5 6 ! 3478 3789 3479 !
! 348# 5 7 ! 1 348# 9 ! 2348 238 6 !
! 69 69 348# ! 7 2 348# ! 348 1 5 !
+----------------------+----------------------+----------------------+
! 2 348# 9 ! 348# 6 5 ! 1 378 347 !
! 3458 7 3458#@ ! 29 348# 1 ! 3468 3689 2349 !
! 348# 1 6 ! 29 7 348# ! 5 389 2349 !
+----------------------+----------------------+----------------------+
! 36789 3689 138 ! 5 19 2 ! 367 4 37 !
! 567 26 25 ! 348 348 348 ! 9 267 1 !
! 349 2349 1234 ! 6 19 7 ! 23 5 8 !
+----------------------+----------------------+----------------------+
Trid-OR2-whip[2]: OR2{{n2r1c2 | n5r5c3}} - r8c3{n5 .} ==> r9c2≠2, r8c2≠2singles ==> r8c2=6, r3c2=9, r3c1=6, r7c7=6, r5c8=6, r1c7=7, r1c2=2
hidden-pairs-in-a-row: r5{n2 n9}{c4 c9} ==> r5c9≠4, r5c9≠3
We now have the same impossible pattern as in Cenoman and Marek's solutions:
EL13c176(*) in eleven's list
- Code: Select all
EL13c176-OR2-relation for digits: 3, 4 and 8
in cells (marked #): (r2c7 r2c1 r2c5 r3c7 r3c3 r3c6 r6c1 r6c6 r4c2 r4c4 r5c7 r5c1 r5c5)
with 2 guardians (in cells marked @) : n2r2c7 n5r5c1
+----------------------+----------------------+----------------------+
! 1 2 348 ! 348 5 6 ! 7 389 349 !
! 348# 5 7 ! 1 348# 9 ! 2348#@ 238 6 !
! 6 9 348# ! 7 2 348# ! 348# 1 5 !
+----------------------+----------------------+----------------------+
! 2 348# 9 ! 348# 6 5 ! 1 378 347 !
! 3458#@ 7 3458 ! 29 348# 1 ! 348# 6 29 !
! 348# 1 6 ! 29 7 348# ! 5 389 2349 !
+----------------------+----------------------+----------------------+
! 3789 38 138 ! 5 19 2 ! 6 4 37 !
! 57 6 25 ! 348 348 348 ! 9 27 1 !
! 349 34 1234 ! 6 19 7 ! 23 5 8 !
+----------------------+----------------------+----------------------+
biv-chain[3]: b7n1{r7c3 r9c3} - r9n2{c3 c7} - b9n3{r9c7 r7c9} ==> r7c3≠3
biv-chain[3]: b7n9{r9c1 r7c1} - r7n7{c1 c9} - b9n3{r7c9 r9c7} ==> r9c1≠3
EL13c176-OR2-whip[3]: OR2{{n2r2c7 | n5r5c1}} - r8c1{n5 n7} - r8c8{n7 .} ==> r2c8≠2The end is trivial:
- Code: Select all
singles ==> r2c7=2, r9c7=3, r7c9=7, r8c8=2, r8c3=5, r8c1=7, r9c2=4, r9c1=9, r9c5=1, r7c5=9, r9c3=2, r7c3=1, r5c1=5, r4c8=7
finned-x-wing-in-rows: n3{r5 r3}{c3 c5} ==> r2c5≠3
finned-x-wing-in-rows: n3{r3 r5}{c3 c6} ==> r6c6≠3
biv-chain[2]: r2n4{c5 c1} - b4n4{r6c1 r5c3} ==> r5c5≠4
biv-chain[2]: b3n4{r1c9 r3c7} - r5n4{c7 c3} ==> r1c3≠4
x-wing-in-columns: n4{c3 c7}{r3 r5} ==> r3c6≠4
x-wing-in-rows: n4{r1 r4}{c4 c9} ==> r8c4≠4, r6c9≠4
biv-chain[3]: r5n3{c5 c3} - b4n4{r5c3 r6c1} - b5n4{r6c6 r4c4} ==> r4c4≠3
hidden-single-in-a-block ==> r5c5=3
whip[1]: c3n3{r3 .} ==> r2c1≠3
hidden-single-in-a-row ==> r2c8=3
biv-chain[2]: c8n8{r1 r6} - b5n8{r6c6 r4c4} ==> r1c4≠8
finned-x-wing-in-rows: n8{r1 r5}{c3 c8} ==> r6c8≠8
stte
*
EL13c176: 4 cells missing, 5 added (wrt tridagon)
- Code: Select all
...........X..X..X..X.X..X......X.X....X..X....X..X..X...........................
isomorphic to:
+-------+-------+-------+
! . . Z ! . . X ! . . X !
! . . . ! . - Z ! . X . !
! . . . ! X . . ! X . . !
+-------+-------+-------+
! . . Z ! - . Z ! . . X !
! . . Z ! . X . ! . X . !
! . . . ! . . - ! - . . !
+-------+-------+-------+
! o o . ! . . . ! . . . !
! o o . ! . . . ! . . . !
! o o . ! . . . ! . . . !
+-------+-------+-------+