- Code: Select all
*-----------*
|..1|59.|..3|
|6..|..2|..8|
|...|...|14.|
|---+---+---|
|..6|..9|.51|
|...|2.5|...|
|53.|8..|6..|
|---+---+---|
|.15|...|...|
|3..|9..|..4|
|8..|.21|9..|
*-----------*
# after a number of reductions
- Code: Select all
*--------------------------------------------------------------------*
| 4 28 1 | 5 9 678 | 27 67 3 |
| 6 79 3 | 1 4 2 | 5 79 8 |
| 27 5 89 | 36(7) 3(78) 36 | 1 4 269 |
|----------------------+----------------------+----------------------|
| 27 28 6 | 347 37 9 | 48 5 1 |
| 1 49 89 | 2 6 5 | 34 38 7 |
| 5 3 47 | 8 1 47 | 6 29 29 |
|----------------------+----------------------+----------------------|
| 9 1 5 | 3467 378 347 | 237 23678 26 |
| 3 67 2 | 9 5 678 | 78 1 4 |
| 8 467 47 | 367 2 1 | 9 36 5 |
*--------------------------------------------------------------------*
At this point, my solver makes the following assignments.
- Code: Select all
r1c7 = 2 Templates -- Pass B
r3c1 = 2 Templates -- Pass B
r4c2 = 2 Templates -- Pass B
How is this possible? If you examine [b1], you find a Naked Quad in <2789> where [r3c1]=7 forces [r3c3]=8 and, together, they force minirow [r3b2] to have two candidates -- <3> and <6> -- for three cells. Thus, [r3c1]=2 and the puzzle cracks (with the other two assignments being made in the process).
Now, it occurs to me that class 222(2) n-tuple in a box might be a good place to start when forcing chains are considered.