.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 23458 1 7 ! 458 4568 68 ! 24 9 36 !
! 6 249 2489 ! 3 7 89 ! 24 1 5 !
! 3459 349 459 ! 2 14569 169 ! 8 7 36 !
+-------------------+-------------------+-------------------+
! 289 269 3 ! 89 268 7 ! 1 5 4 !
! 248 5 2468 ! 148 12468 1268 ! 7 3 9 !
! 1 7 49 ! 459 45 3 ! 6 2 8 !
+-------------------+-------------------+-------------------+
! 7 8 29 ! 6 3 29 ! 5 4 1 !
! 235 236 1256 ! 18 128 4 ! 9 68 7 !
! 49 469 1469 ! 7 189 5 ! 3 68 2 !
+-------------------+-------------------+-------------------+
121 candidates.
The puzzle is in W4 but also in Z4:
- Code: Select all
finned-x-wing-in-rows: n9{r7 r2}{c6 c3} ==> r3c3≠9
biv-chain[3]: r2c7{n4 n2} - r1n2{c7 c1} - b1n8{r1c1 r2c3} ==> r2c3≠4
z-chain[3]: r9c1{n4 n9} - c5n9{r9 r3} - r3n4{c5 .} ==> r1c1≠4
with z-candidates = n4r3c3 n4r3c2 n4r3c1
z-chain[3]: c4n4{r6 r1} - c4n5{r1 r6} - r6c5{n5 .} ==> r5c5≠4
with z-candidates = n4r5c4 n4r6c5
biv-chain[4]: r2c6{n8 n9} - r7n9{c6 c3} - r6n9{c3 c4} - c4n5{r6 r1} ==> r1c4≠8
biv-chain[4]: r2c6{n8 n9} - r7n9{c6 c3} - r6n9{c3 c4} - r4c4{n9 n8} ==> r5c6≠8
whip[1]: c6n8{r2 .} ==> r1c5≠8
biv-chain[4]: r6c3{n4 n9} - r7n9{c3 c6} - r2c6{n9 n8} - c3n8{r2 r5} ==> r5c3≠4
biv-chain[4]: c5n9{r3 r9} - r9c1{n9 n4} - r5n4{c1 c4} - r1c4{n4 n5} ==> r3c5≠5
whip[1]: r3n5{c3 .} ==> r1c1≠5
biv-chain[4]: c1n5{r8 r3} - r3c3{n5 n4} - r6c3{n4 n9} - r7c3{n9 n2} ==> r8c1≠2
biv-chain[4]: r9n1{c3 c5} - c4n1{r8 r5} - r5n4{c4 c1} - r9c1{n4 n9} ==> r9c3≠9
z-chain[4]: r7n9{c3 c6} - r2c6{n9 n8} - r2c3{n8 n2} - r7c3{n2 .} ==> r6c3≠9
with z-candidates = n9r2c3 n9r7c3
singles ==> r6c3=4, r3c3=5, r6c5=5, r6c4=9, r4c4=8, r8c4=1, r5c4=4, r1c4=5, r9c3=1, r8c1=5, r8c2=3
whip[1]: b7n2{r8c3 .} ==> r2c3≠2, r5c3≠2
naked-pairs-in-a-row: r2{c3 c6}{n8 n9} ==> r2c2≠9
x-wing-in-rows: n9{r2 r7}{c3 c6} ==> r3c6≠9
biv-chain[3]: r5c3{n6 n8} - r2n8{c3 c6} - r1c6{n8 n6} ==> r5c6≠6
whip[1]: c6n6{r3 .} ==> r1c5≠6, r3c5≠6
singles ==> r1c5=4, r1c7=2, r2c7=4, r2c2=2
biv-chain[3]: r4c2{n9 n6} - r5c3{n6 n8} - r2c3{n8 n9} ==> r3c2≠9
singles ==> r3c2=4, r9c1=4
biv-chain[3]: c5n6{r4 r5} - c3n6{r5 r8} - r8n2{c3 c5} ==> r4c5≠2
stte
In my approach, obtaining this rating is the basis for dealing with any additional requirement on the number of steps.
There is no 1- or 2- step solution with whips of reasonable length.
I therefore decided to try multi-step solutions with longer z-chains (I could have chosen whips, but as the original puzzle doesn't require whips, I thought it was more fun not to have them in the solution). z-chains are like oddagons, in that they have z-candidates but no t-candidate.
- Code: Select all
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+O+SFin
*** Download from: https://github.com/denis-berthier/CSP-Rules-V2.1
(smart-solve-ntimes-with-fewer-steps
10
".17......6..3........2..87...3..7..4.5......91......2.78.6..5.......4........53.2"
)
gives 4 non-W1 steps in Z7 on the first try:
- Code: Select all
1) z-chain[7]: b8n9{r9c5 r7c6} - b8n2{r7c6 r8c5} - r4c5{n2 n6} - b4n6{r4c2 r5c3} - c3n8{r5 r2} - r2c6{n8 n9} - c5n9{r3 .} ==> r9c5≠8
with z-candidates = n8r4c5 n9r9c5
singles ==> r9c8=8, r8c8=6
2) biv-chain[5]: r4c4{n8 n9} - r6n9{c4 c3} - r7n9{c3 c6} - r2c6{n9 n8} - c3n8{r2 r5} ==> r5c5≠8, r5c4≠8, r5c6≠8, r4c1≠8
whip[1]: c6n8{r2 .} ==> r1c4≠8, r1c5≠8
3) z-chain[6]: c5n9{r3 r9} - r9n1{c5 c3} - c3n6{r9 r5} - r4n6{c2 c5} - r1c5{n6 n5} - r6c5{n5 .} ==> r3c5≠4
with z-candidates = n4r1c5 n4r6c5
whip[1]: r3n4{c3 .} ==> r1c1≠4, r2c2≠4, r2c3≠4
singles ==> r2c7=4, r1c7=2
4) z-chain[4]: r7n9{c3 c6} - r2n9{c6 c2} - r2n2{c2 c3} - r7c3{n2 .} ==> r6c3≠9, r9c3≠9, r3c3≠9
with z-candidates = n9r2c3 n9r7c3
stte
Happy New Year