## 2020-10-17

Post puzzles for others to solve here.

### 2020-10-17

Code: Select all
`.5...8..6..9....5.6..5..1....36.9...9...2...1...1.58....7..2..5.3....7..8..3...2.`
yzfwsf

Posts: 378
Joined: 16 April 2019

### Re: 2020-10-17

Deleted (irrelevant)
Last edited by Cenoman on Sun Oct 18, 2020 3:01 pm, edited 1 time in total.
Cenoman
Cenoman

Posts: 1720
Joined: 21 November 2016
Location: Paris, France

### Re: 2020-10-17

Hi Cenoman:
Haha, I think you must have mistaken the address when replying to the post.
yzfwsf

Posts: 378
Joined: 16 April 2019

### Re: 2020-10-17

SER = 9.0, W = 6
Nothing noticeable for a SER 9.0

Code: Select all
`**************************************************************************************************  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin***  Using CLIPS 6.32-r770***********************************************************************************************223 candidates, 1548 csp-links and 1548 links. Density = 6.25%z-chain-cn[3]: c2n9{r7 r9} - c7n9{r9 r1} - c4n9{r1 .} ==> r7c5 ≠ 9z-chain-cn[3]: c2n9{r9 r7} - c7n9{r7 r1} - c4n9{r1 .} ==> r9c5 ≠ 9whip-rc[4]: r9c9{n4 n9} - r9c7{n9 n6} - r9c2{n6 n1} - r7c1{n1 .} ==> r9c3 ≠ 4t-whip[4]: r6n9{c8 c9} - r9c9{n9 n4} - r8c9{n4 n8} - c8n8{r8 .} ==> r3c8 ≠ 9z-chain[5]: r4n1{c2 c1} - b4n5{r4c1 r5c3} - c3n8{r5 r3} - r3n2{c3 c9} - r6n2{c9 .} ==> r4c2 ≠ 2z-chain[5]: c8n1{r7 r8} - c8n8{r8 r3} - c3n8{r3 r5} - r5n5{c3 c7} - c7n6{r5 .} ==> r7c8 ≠ 6z-chain[5]: c8n1{r8 r7} - c8n8{r7 r3} - c3n8{r3 r5} - r5n5{c3 c7} - c7n6{r5 .} ==> r8c8 ≠ 6whip[1]: b9n6{r9c7 .} ==> r5c7 ≠ 6t-whip[5]: r9n7{c6 c5} - r9n5{c5 c3} - c1n5{r8 r4} - r4n1{c1 c2} - r9n1{c2 .} ==> r9c6 ≠ 4, r9c6 ≠ 6t-whip[5]: r7n3{c7 c8} - c8n1{r7 r8} - c8n8{r8 r3} - c3n8{r3 r5} - r5n5{c3 .} ==> r5c7 ≠ 3hidden-triplets-in-a-block: b6{r6c9 r5c8 r6c8}{n3 n6 n9} ==> r6c9 ≠ 7, r6c9 ≠ 4, r6c9 ≠ 2, r6c8 ≠ 7, r6c8 ≠ 4, r5c8 ≠ 7, r5c8 ≠ 4whip[1]: b6n7{r4c9 .} ==> r4c1 ≠ 7, r4c2 ≠ 7, r4c5 ≠ 7whip[1]: r6n2{c3 .} ==> r4c1 ≠ 2whip[5]: c1n5{r4 r8} - r8n2{c1 c3} - r6c3{n2 n6} - r9c3{n6 n1} - r7c1{n1 .} ==> r4c1 ≠ 4whip[5]: r9n5{c5 c3} - c1n5{r8 r4} - r4n1{c1 c2} - r9n1{c2 c6} - r9n7{c6 .} ==> r9c5 ≠ 4z-chain[3]: r9n4{c9 c2} - r7c1{n4 n1} - c8n1{r7 .} ==> r8c8 ≠ 4whip[5]: r9n5{c5 c3} - c1n5{r8 r4} - r4n1{c1 c2} - r9n1{c2 c6} - r9n7{c6 .} ==> r9c5 ≠ 6whip[5]: r4n1{c2 c1} - b4n5{r4c1 r5c3} - r9n5{c3 c5} - r9n1{c5 c6} - r9n7{c6 .} ==> r7c2 ≠ 1t-whip[6]: r5c8{n6 n3} - r6c9{n3 n9} - r9c9{n9 n4} - r8c9{n4 n8} - r2n8{c9 c2} - c3n8{r3 .} ==> r5c3 ≠ 6t-whip[6]: r7n3{c7 c8} - b6n3{r6c8 r6c9} - b5n3{r6c5 r5c6} - r3n3{c6 c5} - r3n9{c5 c9} - r9c9{n9 .} ==> r7c7 ≠ 4whip[6]: r7n3{c8 c7} - c7n6{r7 r9} - c7n9{r9 r1} - r3n9{c9 c5} - r3n3{c5 c6} - r5n3{c6 .} ==> r1c8 ≠ 3z-chain[4]: r9c9{n4 n9} - r6n9{c9 c8} - r1c8{n9 n7} - r4c8{n7 .} ==> r7c8 ≠ 4whip[6]: r4c8{n4 n7} - r1c8{n7 n9} - r6n9{c8 c9} - r9c9{n9 n4} - r8c9{n4 n8} - b3n8{r2c9 .} ==> r3c8 ≠ 4whip[6]: r4c8{n7 n4} - r1c8{n4 n9} - r6n9{c8 c9} - r9c9{n9 n4} - r8c9{n4 n8} - b3n8{r2c9 .} ==> r3c8 ≠ 7hidden-pairs-in-a-column: c8{n4 n7}{r1 r4} ==> r1c8 ≠ 9whip[6]: r3n9{c5 c9} - r6c9{n9 n3} - r6c5{n3 n7} - b4n7{r6c1 r5c2} - r3n7{c2 c6} - r9n7{c6 .} ==> r3c5 ≠ 4whip[6]: b9n4{r9c9 r9c7} - c7n6{r9 r7} - r7n3{c7 c8} - r5n3{c8 c6} - r3n3{c6 c5} - r3n9{c5 .} ==> r3c9 ≠ 4whip[6]: r2n6{c6 c5} - c5n3{r2 r6} - b6n3{r6c9 r5c8} - r5n6{c8 c2} - r7n6{c2 c7} - r7n3{c7 .} ==> r2c6 ≠ 3whip[6]: c8n1{r8 r7} - b9n8{r7c8 r8c9} - r2n8{c9 c2} - r4n8{c2 c5} - c4n8{r5 r7} - b8n9{r7c4 .} ==> r8c8 ≠ 9whip[6]: r7c1{n4 n1} - c8n1{r7 r8} - r8c6{n1 n6} - r7c5{n6 n8} - r4n8{c5 c2} - r4n1{c2 .} ==> r7c4 ≠ 4whip[5]: c2n9{r9 r7} - r7n4{c2 c5} - r7n6{c5 c7} - r9c7{n6 n9} - r9c9{n9 .} ==> r9c2 ≠ 4whip[1]: r9n4{c9 .} ==> r8c9 ≠ 4t-whip[6]: r4n1{c2 c1} - b4n5{r4c1 r5c3} - c3n8{r5 r3} - r2n8{c2 c9} - r8c9{n8 n9} - r9n9{c7 .} ==> r9c2 ≠ 1naked-triplets-in-a-row: r9{c2 c7 c9}{n9 n6 n4} ==> r9c3 ≠ 6t-whip[6]: r4n1{c2 c1} - c1n5{r4 r8} - r8n2{c1 c3} - b7n1{r8c3 r9c3} - r1c3{n1 n4} - c8n4{r1 .} ==> r4c2 ≠ 4t-whip[6]: r8c8{n1 n8} - r8c9{n8 n9} - b8n9{r8c4 r7c4} - r7n8{c4 c5} - r4n8{c5 c2} - r4n1{c2 .} ==> r8c1 ≠ 1whip[6]: r3n9{c5 c9} - r8c9{n9 n8} - b3n8{r2c9 r3c8} - r3n3{c8 c6} - b5n3{r5c6 r6c5} - r6c9{n3 .} ==> r3c5 ≠ 7whip[6]: r5n3{c6 c8} - r3c8{n3 n8} - r8c8{n8 n1} - r8c6{n1 n6} - c3n6{r8 r6} - c8n6{r6 .} ==> r5c6 ≠ 4whip[6]: r8n2{c1 c3} - c3n5{r8 r5} - r9c3{n5 n1} - r1c3{n1 n4} - c8n4{r1 r4} - r5c7{n4 .} ==> r8c1 ≠ 5singles ==> r4c1 = 5,  r4c2 = 1,  r4c5 = 8, r5c7 = 5t-whip[3]: r8c9{n8 n9} - b8n9{r8c5 r7c4} - c4n8{r7 .} ==> r8c8 ≠ 8naked-single ==> r8c8 = 1finned-x-wing-in-rows: n1{r7 r1}{c5 c1} ==> r2c1 ≠ 1whip[1]: r2n1{c6 .} ==> r1c5 ≠ 1hidden-pairs-in-a-block: b2{r2c5 r2c6}{n1 n6} ==> r2c6 ≠ 7, r2c6 ≠ 4, r2c5 ≠ 7, r2c5 ≠ 4, r2c5 ≠ 3z-chain-rc[3]: r2c5{n6 n1} - r7c5{n1 n4} - r8c6{n4 .} ==> r8c5 ≠ 6t-whip[4]: c6n4{r3 r8} - r8n6{c6 c3} - r9c2{n6 n9} - r7c2{n9 .} ==> r3c2 ≠ 4biv-chain[3]: r3n4{c3 c6} - r8c6{n4 n6} - c3n6{r8 r6} ==> r6c3 ≠ 4whip[4]: r8c1{n2 n4} - b8n4{r8c4 r7c5} - r6n4{c5 c2} - c2n2{r6 .} ==> r1c1 ≠ 2whip[4]: r8c1{n2 n4} - b8n4{r8c4 r7c5} - r6n4{c5 c2} - c2n2{r6 .} ==> r2c1 ≠ 2t-whip[5]: r5c3{n8 n4} - r3n4{c3 c6} - c4n4{r1 r8} - c4n8{r8 r7} - c8n8{r7 .} ==> r3c3 ≠ 8hidden-single-in-a-column ==> r5c3 = 8biv-chain[3]: r8n2{c1 c3} - r3c3{n2 n4} - c6n4{r3 r8} ==> r8c1 ≠ 4naked-single ==> r8c1 = 2biv-chain[4]: r3c3{n2 n4} - c6n4{r3 r8} - r8n6{c6 c3} - r6c3{n6 n2} ==> r1c3 ≠ 2biv-chain[3]: r1n2{c4 c7} - r4c7{n2 n4} - c8n4{r4 r1} ==> r1c4 ≠ 4whip-rc[4]: r6c1{n4 n7} - r5c2{n7 n6} - r9c2{n6 n9} - r7c2{n9 .} ==> r6c2 ≠ 4z-chain[3]: r6n4{c1 c5} - r7n4{c5 c2} - b4n4{r5c2 .} ==> r1c1 ≠ 4z-chain[3]: r6n4{c1 c5} - c4n4{r5 r8} - c3n4{r8 .} ==> r2c1 ≠ 4biv-chain[4]: r6n4{c5 c1} - r7c1{n4 n1} - r9c3{n1 n5} - b8n5{r9c5 r8c5} ==> r8c5 ≠ 4biv-chain[5]: r3n4{c6 c3} - r1c3{n4 n1} - c1n1{r1 r7} - c1n4{r7 r6} - b5n4{r6c5 r5c4} ==> r2c4 ≠ 4z-chain-cn[3]: c4n7{r2 r5} - c4n4{r5 r8} - c6n4{r8 .} ==> r3c6 ≠ 7z-chain[3]: c2n8{r2 r3} - r3n7{c2 c9} - r3n2{c9 .} ==> r2c2 ≠ 2whip[1]: b1n2{r3c3 .} ==> r3c9 ≠ 2biv-chain[3]: c9n2{r2 r4} - r4c7{n2 n4} - r9n4{c7 c9} ==> r2c9 ≠ 4biv-chain[3]: r2n8{c9 c2} - r2n4{c2 c7} - r1c8{n4 n7} ==> r2c9 ≠ 7biv-chain[3]: b3n9{r1c7 r3c9} - c9n7{r3 r4} - c9n2{r4 r2} ==> r1c7 ≠ 2stte`
denis_berthier
2010 Supporter

Posts: 2465
Joined: 19 June 2007
Location: Paris