Serg wrote:
2014 = ((3+3)/3)^(33/3) - 33 - 3/3; (10 digits)
3 used 7 times
- Code: Select all
( 333+3 ) x 3!
- 3! / 3
Serg wrote:
2014 = ((3+3)/3)^(33/3) - 33 - 3/3; (10 digits)
( 333+3 ) x 3!
- 3! / 3
Pat wrote:Serg wrote:
2014 = 2^(22/2) - (2 + 2 + 2)^2 + 2; (9 digits)
2 used 8 times
- Code: Select all
sqrt ( 2^22 )
- ( 2+2+2 ) ^2
+ 2
Pat wrote:Serg wrote:
- Code: Select all
[ 2^22 - ( 2+2 )! ] / 2
- 22
Pat wrote:Serg wrote:
2014 = ((3+3)/3)^(33/3) - 33 - 3/3; (10 digits)
3 used 7 times
- Code: Select all
( 333+3 ) x 3!
- 3! / 3
sqrt ( 2^22 )
- ( 2+2 )! / 2
- 22
2014 = (0!+0!) x (((0!+0!+0!)!+0!)!/((0!+0!+0!)!-0!) - 0!); [999_Springs; 11 digits]
2014 = (1+1)^11 - (1+1+1) x 11 - 1; [Serg; 10 digits]
2014 = (2x2x2)!/(22-2) - 2; [999_Springs; 7 digits]
2014 = 3! x (3!^3) + (3!)! - 3!/3; [999_Springs; 6 digits]
2014 = (4+4)!/(4!-4) - sqrt(4); [999_Springs; 5 digits]
2014 = 5^5 - 5555/5; [999_Springs; 7 digits]
2014 = 6 x sqrt(6^6) + 6! - (6+6)/6; [999_Springs; 7 digits]
2014 = ((7!/7-7x7) x (7+7+7) + 7)/7; [Pat; 9 digits]
2014 = (7!+7!)/7 + 7 x (77+7) - 7 - 7; [Serg; 9 digits]
2014 = (7!+7!)/7 + 7 x sqrt(7!+7/7) + 77; [Serg; 9 digits]
2014 = 8!/(8+8+sqrt(8+8)) - sqrt(sqrt(8+8)); [Pat; 7 digits]
2014 = sqrt(9)! x (sqrt(9)!^sqrt(9)) + (sqrt(9)!)! - sqrt(9)!/sqrt(9); [999_Springs; 6 digits]
6! + 6! + 6!
- 6! / 6
- 6! / ( 6x6 )
- 6
[
( 7! / 7 - 7x7 ) x ( 7+7+7 )
+ 7
]
/ 7
8! / [ 8 + 8 + sqrt (8+8) ]
- sqrt (sqrt (8+8) )
9! / [ 9 x ( 9+9 ) + 9 + 9 ]
- ( sqrt ( 9 ) ) !
/ sqrt ( 9 )
( 999 + 9 - 9/9 )
* ( sqrt ( 9 ) ) !
/ sqrt ( 9 )
( sqrt ( 9 ) ) !! x sqrt ( 9 )
- ( sqrt ( 9 ) ) !! / ( sqrt ( 9 ) ) !
- ( sqrt ( 9 ) ) !! / ( ( sqrt ( 9 ) ) ! x ( sqrt ( 9 ) ) ! )
- ( sqrt ( 9 ) ) !
ocean and eleven should have paired up to make a sudoku-solving duo called Ocean's Eleven
Pat wrote:
6 used 9 times
- Code: Select all
6! + 6! + 6!
- 6! / 6
- 6! / ( 6x6 )
- 6
Pat wrote:
7 used 9 times
started as
671 x 3 + 1
but that needed 10
so, postponed /7 to the very end
hence the monster
[ 671 x 21 + 7 ] /7
- Code: Select all
[
( 7! / 7 - 7x7 ) x ( 7+7+7 )
+ 7
]
/ 7