- Code: Select all
. 3 .|. . .|. . .
. . 8|. . .|2 . 3
1 . .|. 4 .|. 7 .
-----+-----+-----
5 . .|. . 6|4 8 .
. . .|9 . 7|. . .
. 1 2|3 . .|. . 7
-----+-----+-----
. 5 .|. 9 .|. . 4
6 . 1|. . .|9 . .
. . .|. . .|. 1 .
Enjoy solving!
200e200w
. 3 .|. . .|. . .
. . 8|. . .|2 . 3
1 . .|. 4 .|. 7 .
-----+-----+-----
5 . .|. . 6|4 8 .
. . .|9 . 7|. . .
. 1 2|3 . .|. . 7
-----+-----+-----
. 5 .|. 9 .|. . 4
6 . 1|. . .|9 . .
. . .|. . .|. 1 .
+----------------------+----------------------+----------------------+
|fB247 3 456 | 2678 267 289 | 1568 49 1568 |
|fA47 f46 8 | 1567 a1-67 159 | 2 49 3 |
| 1 eC269 D569 | d268 4 3 | 568 7 568 |
+----------------------+----------------------+----------------------+
| 5 7 3 | c12 b12 6 | 4 8 9 |
| 48 468 46 | 9 5 7 | 13 23 12 |
| 9 1 2 | 3 8 4 | 56 56 7 |
+----------------------+----------------------+----------------------+
| 238 5 7 | 1268 9 128 | 368 236 4 |
| 6 F248 1 | G24578 H237 258 | 9 235 258 |
| 2348 2489 E49 | 24568 236 258 | 7 1 2568 |
+----------------------+----------------------+----------------------+
+----------------------+---------------------+----------------------+
| 247 3 456 | 2678 67 289 | 1568 49 1568 |
| 47 46 8 | 567 1 59 | 2 49 3 |
| 1 269 569 | 268 4 3 | 568 7 568 |
+----------------------+---------------------+----------------------+
| 5 7 3 | 1 2 6 | 4 8 9 |
| 48 468 46 | 9 5 7 | 13 d23 12 |
| 9 1 2 | 3 8 4 | 56 56 7 |
+----------------------+---------------------+----------------------+
| 238 5 7 | 28-6 9 1 | 368 d236 4 |
| 6 248 1 | 24578 b37 258 | 9 c235 258 |
| 2348 2489 49 | 24568 a36 258 | 7 1 2568 |
+----------------------+---------------------+----------------------+
+---------------------+--------------------+---------------------+
|f*24 3 e45 | 2678 67 28 | 158 9 1568 |
| 7 6 8 | 5 1 9 | 2 4 3 |
| 1 g29 59 | h268 4 3 | 58 7 568 |
+---------------------+--------------------+---------------------+
| 5 7 3 | 1 2 6 | 4 8 9 |
| 48 48 6 | 9 5 7 | 13 23 12 |
| 9 1 2 | 3 8 4 | 56 56 7 |
+---------------------+--------------------+---------------------+
| a3-28 5 7 | i28 9 1 | b368 b236 4 |
| 6 c248 1 | 47 37 c258 | 9 c235 c258 |
| 2348 2489 d49 | 46 36 258 | 7 1 258 |
+---------------------+--------------------+---------------------+
+----------------------+----------------------+----------------------+
| 247 3 456 | 2678 267 289 | 1568 49 1568 |
| 47 46 8 | 1567 167 159 | 2 49 3 |
| 1 269 569 | 268 4 3 | 568 7 568 |
+----------------------+----------------------+----------------------+
| 5 7 3 | 12 12 6 | 4 8 9 |
| 48 468 46 | 9 5 7 | 13 23 12 |
| 9 1 2 | 3 8 4 | 56 56 7 |
+----------------------+----------------------+----------------------+
| 238 5 7 | 1268 9 128 | 368 236 4 |
| 6 248 1 | 24578 237 258 | 9 235 258 |
| 2348 2489 49 | 24568 236 258 | 7 1 2568 |
+----------------------+----------------------+----------------------+
(2)r9c5 - r789c6 = (2)r1c6
(3)r9c5 - r8c5 = (3-5)r8c8 = (5-6)r6c8 = (6)r7c8 (2)r7c1 - r1c1 = (2)r3c2
\ //
(6)r9c5 - r7c4 = (6-3)r7c7 = r5c7 - (3=2)r5c8 - (2)r7c8 = (2)r7c4
\\ / \\
........ (6)r7c8 ............ (2-1)r7c6 = r7c4 - (1=2)r4c4
=>-2r3c4; stte
+-----------------+-----------------+-----------------+
| 47-2* 3 456 | 2678# 267 289 | 1568 49 1568 |
| 47 46 8 | 1567 167 159 | 2 49 3 |
| 1 269* 569 | 68-2* 4 3 | 568 7 568 |
+-----------------+-----------------+-----------------+
| 5 7 3 | 12# 12 6 | 4 8 9 |
| 48 468 46 | 9 5 7 | 13 23 12 |
| 9 1 2 | 3 8 4 | 56 56 7 |
+-----------------+-----------------+-----------------+
| 238* 5 7 | 1268* 9 128# | 368 236# 4 |
| 6 248 1 | 24578# 237 258 | 9 235 258 |
| 2348# 2489 49 | 24568# 236 258 | 7 1 2568 |
+-----------------+-----------------+-----------------+
Sudtyro2 wrote:I had initially looked in the 2s grid for a stte elimination at 2r3c4 or 2r1c1 starting from the 5-link Oddagon(*) and its seven Guardians(#) shown below. Fully six of those Guardians can either see the stte cells directly or via simple X-Y chains. The one remaining "tough" Guardian is 2r7c8.
Any thoughts or observations about whether that Guardian can see either stte cell? A network solution would be fine with me!
SteveC
(6)r7c8 = r6c8 - (6=5)r6c7 - r1c7 (6)r3c3 - (6=4)r2c2 (2)r7c1 - r1c1 = (2)r3c2
/ \\ // \ // \
(2)r7c8 (5)r1c3 - (5)r3c3 (4=258)r8c269 - (5)r8c8 = (5-6)r6c8 = (6-2)r7c8 = (2)r7c4.............. -(2)r3c4
\ // \\ / \\ /
(2)r5c8 = (2-1)r5c9 = (1-5)r1c9 (9)r3c3 - (9=4)r9c3 (2-1)r7c6 = r7c4 - (1=2)r4c4
=> (2)r7c8 - (2)r3c4 q.e.d.
Cenoman wrote: => (2)r7c8 - (2)r3c4 q.e.d.
Cenoman wrote:... Artificial Intelligence ...
eleven wrote:After reading about alphago and alpha zero, where they found the best openings from scratch in some days - developed by mankind in centuries - , it is probably not hard to to make a neural net, which solves the hard puzzles in a most efficient way.
In minutes sk loops and jexocets could be discovered. Spoiling a lot of the fun.
I like AI, but it has it's disadvantages.
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 247 3 456 ! 25678 267 2589 ! 1568 4569 1568 !
! 47 46 8 ! 1567 167 159 ! 2 4569 3 !
! 1 269 569 ! 2568 4 3 ! 568 7 568 !
+-------------------+-------------------+-------------------+
! 5 7 3 ! 12 12 6 ! 4 8 9 !
! 48 468 46 ! 9 5 7 ! 13 23 12 !
! 9 1 2 ! 3 8 4 ! 56 56 7 !
+-------------------+-------------------+-------------------+
! 238 5 7 ! 1268 9 128 ! 368 236 4 !
! 6 248 1 ! 24578 237 258 ! 9 235 258 !
! 2348 2489 49 ! 24568 236 258 ! 7 1 2568 !
+-------------------+-------------------+-------------------+
hidden-pairs-in-a-column: c8{n4 n9}{r1 r2} ==> r2c8 ≠ 6, r2c8 ≠ 5, r1c8 ≠ 6, r1c8 ≠ 5
whip[1]: r2n5{c6 .} ==> r1c4 ≠ 5, r1c6 ≠ 5, r3c4 ≠ 5
biv-chain[4]: r3n2{c4 c2} - b1n9{r3c2 r3c3} - r9c3{n9 n4} - b8n4{r9c4 r8c4} ==> r8c4 ≠ 2
whip[4]: r8n3{c5 c8} - r5c8{n3 n2} - r7n2{c8 c1} - r7n3{c1 .} ==> r8c5 ≠ 2
z-chain[5]: r2c2{n6 n4} - r8n4{c2 c4} - r8n7{c4 c5} - c5n3{r8 r9} - c5n6{r9 .} ==> r2c4 ≠ 6
biv-chain[4]: r2n6{c2 c5} - c5n1{r2 r4} - r4c4{n1 n2} - r3n2{c4 c2} ==> r3c2 ≠ 6
biv-chain[5]: r2n6{c2 c5} - c5n1{r2 r4} - b5n2{r4c5 r4c4} - r3n2{c4 c2} - b1n9{r3c2 r3c3} ==> r3c3 ≠ 6
finned-swordfish-in-rows: n6{r7 r6 r3}{c4 c8 c7} ==> r1c7 ≠ 6
t-whip[5]: c6n2{r9 r1} - c6n9{r1 r2} - r2n5{c6 c4} - r2n1{c4 c5} - r4c5{n1 .} ==> r9c5 ≠ 2
biv-chain[4]: r9c5{n6 n3} - r8n3{c5 c8} - c8n5{r8 r6} - c8n6{r6 r7} ==> r7c4 ≠ 6, r9c9 ≠ 6
whip[1]: c9n6{r3 .} ==> r3c7 ≠ 6
biv-chain[3]: b9n6{r7c8 r7c7} - c7n3{r7 r5} - r5c8{n3 n2} ==> r7c8 ≠ 2
naked-quads-in-a-block: b8{r7c4 r7c6 r8c6 r9c6}{n2 n1 n8 n5} ==> r9c4 ≠ 8, r9c4 ≠ 5, r9c4 ≠ 2, r8c4 ≠ 8, r8c4 ≠ 5
hidden-single-in-a-column ==> r2c4 = 5
biv-chain[4]: r3c3{n5 n9} - r9c3{n9 n4} - r9c4{n4 n6} - r3n6{c4 c9} ==> r3c9 ≠ 5
biv-chain[4]: r9c4{n6 n4} - r9c3{n4 n9} - c2n9{r9 r3} - r3n2{c2 c4} ==> r3c4 ≠ 6
hidden-single-in-a-row ==> r3c9 = 6
naked-triplets-in-a-column: c4{r3 r4 r7}{n8 n2 n1} ==> r1c4 ≠ 8, r1c4 ≠ 2
z-chain[4]: r3c4{n8 n2} - b1n2{r3c2 r1c1} - r7n2{c1 c6} - r7n1{c6 .} ==> r7c4 ≠ 8
stte
whip[10]: r3n2{c2 c4} - r4n2{c4 c5} - r4n1{c5 c4} - r7n1{c4 c6} - r7n2{c6 c8} - r5c8{n2 n3} - c7n3{r5 r7} - r8n3{c8 c5} - r9c5{n3 n6} - b9n6{r9c9 .} ==> r1c1 ≠ 2
stte
Step 1:
whip[6]: c5n1{r2 r4} - r4c4{n1 n2} - r3n2{c4 c2} - r3n9{c2 c3} - b1n6{r3c3 r1c3} - c3n5{r1 .} ==> r2c5 ≠ 6
Step 2:
biv-chain[6]: r8n7{c5 c4} - b8n4{r8c4 r9c4} - r9c3{n4 n9} - b1n9{r3c3 r3c2} - b1n2{r3c2 r1c1} - b1n7{r1c1 r2c1} ==> r2c5 ≠ 7
singles ==> r2c5 = 1, r4c5 = 2, r4c4 = 1, r7c6 = 1
Step 3:
z-chain[6]: r8n4{c2 c4} - r8n7{c4 c5} - r1c5{n7 n6} - r2n6{c4 c8} - c8n9{r2 r1} - r1n4{c8 .} ==> r2c2 ≠ 4
singles ==> r2c2 = 6, r5c3 = 6
Step 4:
whip[5]: c9n6{r1 r9} - r9c5{n6 n3} - r8n3{c5 c8} - r7c8{n3 n2} - r5c8{n2 .} ==> r3c7 ≠ 6
Step 5:
whip[6]: b1n2{r3c2 r1c1} - r7n2{c1 c8} - r5c8{n2 n3} - c7n3{r5 r7} - b9n6{r7c7 r9c9} - r3n6{c9 .} ==> r3c4 ≠ 2
stte
eleven wrote:it is probably not hard to to make a neural net, which solves the hard puzzles in a most efficient way.Cenoman wrote:... Artificial Intelligence ...
In minutes sk loops and jexocets could be discovered. Spoiling a lot of the fun.
I like AI, but it has it's disadvantages.