1to9 Bands 4/5

Post puzzles for others to solve here.

1to9 Bands 4/5

Postby mith » Wed Nov 11, 2020 9:27 pm

Two easy ones today:

129 Shuriken
Code: Select all
+-------+-------+-------+
| . . . | . . 1 | 2 3 . |
| 4 5 . | . 6 . | . . . |
| 7 . . | 8 . . | . . 9 |
+-------+-------+-------+
| . 1 . | 2 . . | 3 . . |
| . . 4 | . 5 . | 6 . . |
| . . 7 | . . 8 | . 9 . |
+-------+-------+-------+
| 1 . . | . . 2 | . . 3 |
| . . . | . 4 . | . 5 6 |
| . 7 8 | 9 . . | . . . |
+-------+-------+-------+
.....123.45..6....7..8....9.1.2..3....4.5.6....7..8.9.1....2..3....4..56.789.....


129 Dragon
Code: Select all
+-------+-------+-------+
| 1 . . | . . . | 2 . 3 |
| . . 4 | 5 . . | . 6 . |
| . 7 . | . 8 9 | . . . |
+-------+-------+-------+
| . 1 2 | . . 3 | . . . |
| 4 . . | . 5 . | . . 6 |
| . . . | 7 . . | 8 9 . |
+-------+-------+-------+
| . . . | 1 2 . | . 3 . |
| . 4 . | . . 5 | 6 . . |
| 7 . 8 | . . . | . . 9 |
+-------+-------+-------+
1.....2.3..45...6..7..89....12..3...4...5...6...7..89....12..3..4...56..7.8.....9
mith
 
Posts: 996
Joined: 14 July 2020

Re: 1to9 Bands 4/5

Postby Leren » Thu Nov 12, 2020 4:44 am

Spinners are grinners for both puzzles. For Puzzle 1 : Hodoku - Remote pairs; me - Skyscraper. For Puzzle 2 : Hodoku - W Wing ; me - btte. Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: 1to9 Bands 4/5

Postby pjb » Thu Nov 12, 2020 6:01 am

Leren, Agree: skyscraper for 1, but simply btte for 2? Am I missing something, or you must have a basic move I'm lacking. I found (1=2)r2c6-(2=14)r6c56 => -1 r5c6; stte

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: 1to9 Bands 4/5

Postby Leren » Thu Nov 12, 2020 6:38 am

Hi Phil, I was being a bit cheeky about the second puzzle.

The rotation Isomorphism is [19] [28] [37] [46] [5], so after "normal" basics you can set r1c6 = 7 & r9c4 = 3 by just invoking the Isomorphism that you have found at the start, and it's stte from there.

Leren

PS After rethinking that it wasn't as straightforward as I have said. After basics r1c4 & r9c6 are both 46, so r1c6 <> 46 = 7 & r9c4 <> 46 = 3, so I would have to say it's not basic, but it is a rotation deduction, not a "normal" chain.

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: 1to9 Bands 4/5

Postby mith » Thu Nov 12, 2020 1:05 pm

Nice, I hadn't seen that. :) (I had Phil's XYZ-Wing, FWIW.)
mith
 
Posts: 996
Joined: 14 July 2020

Re: 1to9 Bands 4/5

Postby denis_berthier » Sun Nov 15, 2020 6:47 am

129 Shuriken
SER=4.5
Code: Select all
(solve-sudoku-grid
   +-------+-------+-------+
   ! . . . ! . . 1 ! 2 3 . !
   ! 4 5 . ! . 6 . ! . . . !
   ! 7 . . ! 8 . . ! . . 9 !
   +-------+-------+-------+
   ! . 1 . ! 2 . . ! 3 . . !
   ! . . 4 ! . 5 . ! 6 . . !
   ! . . 7 ! . . 8 ! . 9 . !
   +-------+-------+-------+
   ! 1 . . ! . . 2 ! . . 3 !
   ! . . . ! . 4 . ! . 5 6 !
   ! . 7 8 ! 9 . . ! . . . !
   +-------+-------+-------+
)
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = SFin
***  Using CLIPS 6.32-r778
***********************************************************************************************
lots of singles
whip[1]: r8n2{c2 .} ==> r9c1 ≠ 2
whip[1]: r2n8{c9 .} ==> r1c9 ≠ 8
hidden-pairs-in-a-column: c1{n2 n9}{r5 r8} ==> r5c1 ≠ 8
hidden-pairs-in-a-column: c9{n1 n8}{r2 r5} ==> r5c9 ≠ 2
finned-x-wing-in-rows: n6{r7 r6}{c4 c3} ==> r4c3 ≠ 6
stte





129 Dragon
SER 4.4, but requires a final bivalue-chain
Code: Select all
(solve-sudoku-grid
   +-------+-------+-------+
   ! 1 . . ! . . . ! 2 . 3 !
   ! . . 4 ! 5 . . ! . 6 . !
   ! . 7 . ! . 8 9 ! . . . !
   +-------+-------+-------+
   ! . 1 2 ! . . 3 ! . . . !
   ! 4 . . ! . 5 . ! . . 6 !
   ! . . . ! 7 . . ! 8 9 . !
   +-------+-------+-------+
   ! . . . ! 1 2 . ! . 3 . !
   ! . 4 . ! . . 5 ! 6 . . !
   ! 7 . 8 ! . . . ! . . 9 !
   +-------+-------+-------+
)

***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = BC+SFin
***  Using CLIPS 6.32-r778
***********************************************************************************************
singles ==> r8c3 = 1, r5c7 = 3, r5c3 = 7, r2c7 = 9
162 candidates, 744 csp-links and 744 links. Density = 5.71%
whip[1]: r7n9{c3 .} ==> r8c1 ≠ 9
whip[1]: r3n1{c9 .} ==> r2c9 ≠ 1
hidden-pairs-in-a-block: b7{r8c1 r9c2}{n2 n3} ==> r9c2 ≠ 6, r9c2 ≠ 5
whip[1]: r9n5{c8 .} ==> r7c7 ≠ 5, r7c9 ≠ 5
whip[1]: r9n6{c6 .} ==> r7c6 ≠ 6
hidden-pairs-in-a-block: b9{r9c7 r9c8}{n1 n5} ==> r9c8 ≠ 4, r9c8 ≠ 2, r9c7 ≠ 4
singles ==> r9c2 = 2, r8c1 = 3
whip[1]: r9n4{c6 .} ==> r7c6 ≠ 4
hidden-pairs-in-a-block: b6{r5c8 r6c9}{n1 n2} ==> r6c9 ≠ 5, r6c9 ≠ 4
whip[1]: r6n4{c6 .} ==> r4c4 ≠ 4, r4c5 ≠ 4
whip[1]: r6n5{c3 .} ==> r4c1 ≠ 5
hidden-pairs-in-a-block: b4{r4c1 r5c2}{n8 n9} ==> r4c1 ≠ 6
whip[1]: r4n6{c5 .} ==> r6c5 ≠ 6, r6c6 ≠ 6
hidden-pairs-in-a-block: b3{r1c8 r2c9}{n7 n8} ==> r1c8 ≠ 5, r1c8 ≠ 4
whip[1]: b3n4{r3c9 .} ==> r3c4 ≠ 4
whip[1]: b3n5{r3c9 .} ==> r3c1 ≠ 5, r3c3 ≠ 5
hidden-pairs-in-a-block: b1{r1c2 r1c3}{n5 n9} ==> r1c3 ≠ 6, r1c2 ≠ 8, r1c2 ≠ 6
singles ==> r1c8 = 8, r2c9 = 7
whip[1]: r1n6{c6 .} ==> r3c4 ≠ 6
biv-chain[3]: r5c2{n9 n8} - c6n8{r5 r7} - r8c4{n8 n9} ==> r5c4 ≠ 9
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles