.
Yes, a monster indeed.
What I wanted to show with this puzzle is, finding and applying anti-tridagon rules may leave us with a very hard puzzle.
I also wanted to illustrate the
necessity of using degenerated Trid-ORk-relations.
1) Let's first evacuate the use of eleven replacement at the start: it leads to an easy solution in W10 (I mean easy for a puzzle in T&E(3)):
- Code: Select all
(solve-sukaku-grid-by-eleven-replacement3 3 5 9
1 5
2 6
3 4
+-------------------+-------------------+-------------------+
! 1239 125 12359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 3569 3569 !
! 369 568 3589 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 127 9 128 ! 35678 356 3578 ! 4 3567 3568 !
! 5 3 48 ! 6789 469 789 ! 1 679 2 !
! 47 48 6 ! 2 3459 1 ! 3589 3579 3589 !
+-------------------+-------------------+-------------------+
! 1349 145 13459 ! 35789 1359 35789 ! 6 2 34589 !
! 8 7 23459 ! 3569 23569 359 ! 359 1 3459 !
! 12369 1256 12359 ! 3589 12359 4 ! 3589 359 7 !
+-------------------+-------------------+-------------------+
)
- Code: Select all
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 3, 5 and 9 in 3 cells r1c5, r2c6 and r3c4,
the resolution state is:
+----------------------+----------------------+----------------------+
! 12359 12359 12359 ! 4 3 6 ! 7 8 359 !
! 3594 4359 7 ! 1 8 5 ! 2 3596 3596 !
! 3596 35968 3598 ! 9 7 2 ! 359 4 1 !
+----------------------+----------------------+----------------------+
! 127 359 128 ! 359678 3596 35978 ! 4 35967 35968 !
! 359 359 48 ! 678359 46359 78359 ! 1 67359 2 !
! 47 48 6 ! 2 3594 1 ! 3598 3597 3598 !
+----------------------+----------------------+----------------------+
! 13594 14359 13594 ! 35978 1359 35978 ! 6 2 35948 !
! 8 7 23594 ! 3596 23596 359 ! 359 1 3594 !
! 123596 123596 12359 ! 3598 12359 4 ! 3598 359 7 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
whip[1]: r6n3{c9 .} ==> r5c8≠3, r4c8≠3, r4c9≠3
naked-pairs-in-a-block: b4{r5c3 r6c2}{n4 n8} ==> r6c1≠4, r4c3≠8
naked-single ==> r6c1=7
z-chain[3]: r9n6{c1 c2} - c2n2{r9 r1} - c2n1{r1 .} ==> r9c1≠1
z-chain[3]: c2n6{r9 r3} - r3n8{c2 c3} - c3n3{r3 .} ==> r9c2≠3
t-whip[5]: c3n3{r9 r3} - r3n8{c3 c2} - c2n6{r3 r9} - c2n2{r9 r1} - c2n1{r1 .} ==> r7c2≠3
whip[5]: c7n8{r6 r9} - c7n9{r9 r8} - r8c6{n9 n3} - r9c4{n3 n5} - c8n5{r9 .} ==> r6c7≠5
whip[5]: r1c9{n9 n5} - r3c7{n5 n3} - r6c7{n3 n8} - r4c9{n8 n6} - r2c9{n6 .} ==> r6c9≠9
whip[7]: r1c9{n9 n5} - r3c7{n5 n3} - r2c9{n3 n6} - r4c9{n6 n8} - r6n8{c9 c2} - r5c3{n8 n4} - r8n4{c3 .} ==> r8c9≠9
t-whip[9]: r6n9{c8 c5} - r6n4{c5 c2} - c2n8{r6 r3} - c2n6{r3 r9} - c2n2{r9 r1} - c2n1{r1 r7} - r7c5{n1 n5} - r4c5{n5 n6} - r5n6{c5 .} ==> r5c8≠9
t-whip[9]: r6n5{c9 c5} - r6n4{c5 c2} - c2n8{r6 r3} - c2n6{r3 r9} - c2n2{r9 r1} - c2n1{r1 r7} - r7c5{n1 n9} - r4c5{n9 n6} - r5n6{c5 .} ==> r5c8≠5
t-whip[10]: r6n9{c8 c5} - r6n4{c5 c2} - c2n8{r6 r3} - c2n6{r3 r9} - c2n2{r9 r1} - c2n1{r1 r7} - r7c5{n1 n5} - r4c5{n5 n6} - r5n6{c5 c8} - c8n7{r5 .} ==> r4c8≠9
whip[8]: c9n6{r2 r4} - r5c8{n6 n7} - r4c8{n7 n5} - r4c5{n5 n9} - r4c2{n9 n3} - r2c2{n3 n4} - r6n4{c2 c5} - r6n5{c5 .} ==> r2c9≠9
whip[5]: r8c6{n3 n9} - r8c7{n9 n5} - b3n5{r3c7 r1c9} - b3n9{r1c9 r2c8} - r9c8{n9 .} ==> r8c9≠3
whip[7]: c3n9{r9 r1} - c9n9{r1 r4} - b4n9{r4c2 r5c1} - b5n9{r5c5 r6c5} - r6n4{c5 c2} - r2c2{n4 n3} - b4n3{r4c2 .} ==> r7c2≠9
whip[9]: c8n5{r6 r9} - c7n5{r9 r3} - r1c9{n5 n9} - c8n9{r2 r6} - r6n3{c8 c7} - r8c7{n3 n9} - r8c6{n9 n3} - r9c4{n3 n8} - r9c7{n8 .} ==> r6c9≠5
whip[9]: r5n4{c3 c5} - r6n4{c5 c2} - r7n4{c2 c9} - b9n8{r7c9 r9c7} - r6n8{c7 c9} - c9n3{r6 r2} - c9n6{r2 r4} - c5n6{r4 r8} - r8n2{c5 .} ==> r8c3≠4
hidden-single-in-a-row ==> r8c9=4
whip[9]: b9n8{r9c7 r7c9} - b6n8{r6c9 r6c7} - c7n9{r6 r8} - r8c6{n9 n3} - b9n3{r8c7 r9c8} - c7n3{r9 r3} - c3n3{r3 r7} - c3n4{r7 r5} - b4n8{r5c3 .} ==> r9c7≠5
whip[9]: r2c9{n6 n3} - r3c7{n3 n5} - c9n5{r1 r7} - c9n8{r7 r6} - r6c2{n8 n4} - r7c2{n4 n1} - r7c5{n1 n9} - r6c5{n9 n5} - r4c5{n5 .} ==> r4c9≠6
hidden-single-in-a-column ==> r2c9=6
hidden-pairs-in-a-column: c8{n6 n7}{r4 r5} ==> r4c8≠5
biv-chain[3]: r2c8{n3 n9} - r1c9{n9 n5} - b6n5{r4c9 r6c8} ==> r6c8≠3
t-whip[6]: r6n3{c9 c7} - c7n8{r6 r9} - c7n9{r9 r8} - r8c6{n9 n3} - r9c4{n3 n5} - r9c8{n5 .} ==> r7c9≠3
hidden-single-in-a-column ==> r6c9=3
finned-x-wing-in-columns: n8{c9 c6}{r7 r4} ==> r4c4≠8
whip[9]: c3n4{r7 r5} - b4n8{r5c3 r6c2} - b6n8{r6c7 r4c9} - r7c9{n8 n5} - r7c5{n5 n1} - r7c2{n1 n4} - r7c1{n4 n3} - c3n3{r7 r3} - r3n8{c3 .} ==> r7c3≠9
z-chain[5]: b9n3{r9c8 r8c7} - r8c6{n3 n9} - c3n9{r8 r1} - b3n9{r1c9 r2c8} - c8n3{r2 .} ==> r9c3≠3
whip[5]: b3n9{r2c8 r1c9} - c3n9{r1 r8} - r8c6{n9 n3} - r8c7{n3 n5} - b3n5{r3c7 .} ==> r9c8≠9
biv-chain[3]: r9c8{n5 n3} - r2c8{n3 n9} - r1c9{n9 n5} ==> r7c9≠5
biv-chain[2]: r6n5{c5 c8} - b9n5{r9c8 r8c7} ==> r8c5≠5
biv-chain[4]: r9n8{c4 c7} - r6c7{n8 n9} - c8n9{r6 r2} - c8n3{r2 r9} ==> r9c4≠3
biv-chain[4]: r9c4{n5 n8} - c7n8{r9 r6} - c2n8{r6 r3} - c2n6{r3 r9} ==> r9c2≠5
biv-chain[4]: c2n8{r3 r6} - r6c7{n8 n9} - c8n9{r6 r2} - b3n3{r2c8 r3c7} ==> r3c2≠3
biv-chain[4]: c8n9{r2 r6} - r6n5{c8 c5} - r6n4{c5 c2} - b1n4{r2c2 r2c1} ==> r2c1≠9
whip[4]: r1c9{n5 n9} - r2n9{c8 c2} - r5c2{n9 n3} - r4c2{n3 .} ==> r1c2≠5
biv-chain[5]: r3n6{c1 c2} - c2n8{r3 r6} - r6c7{n8 n9} - c8n9{r6 r2} - b3n3{r2c8 r3c7} ==> r3c1≠3
t-whip[5]: b4n5{r5c2 r5c1} - r3c1{n5 n6} - r9n6{c1 c2} - c2n2{r9 r1} - c2n1{r1 .} ==> r7c2≠5
biv-chain[5]: r9c4{n5 n8} - c7n8{r9 r6} - r6c2{n8 n4} - r7c2{n4 n1} - b8n1{r7c5 r9c5} ==> r9c5≠5
whip[5]: r3c7{n3 n5} - r1c9{n5 n9} - b9n9{r7c9 r9c7} - c3n9{r9 r8} - r8c6{n9 .} ==> r8c7≠3
whip[1]: b9n3{r9c8 .} ==> r9c1≠3
whip[5]: r3n5{c3 c7} - r3n3{c7 c3} - b7n3{r8c3 r7c1} - b7n5{r7c1 r9c1} - b9n5{r9c8 .} ==> r1c3≠5
z-chain[6]: r9c4{n5 n8} - c7n8{r9 r6} - c2n8{r6 r3} - r3c3{n8 n3} - c7n3{r3 r9} - r9c8{n3 .} ==> r9c3≠5
naked-triplets-in-a-column: c3{r1 r4 r9}{n9 n2 n1} ==> r8c3≠9, r8c3≠2, r7c3≠1
hidden-single-in-a-row ==> r8c5=2
hidden-single-in-a-block ==> r8c4=6
biv-chain[3]: r8n9{c6 c7} - r7c9{n9 n8} - r4n8{c9 c6} ==> r4c6≠9
biv-chain[3]: r8c3{n3 n5} - c7n5{r8 r3} - r3n3{c7 c3} ==> r7c3≠3
z-chain[3]: b7n9{r9c3 r7c1} - b7n3{r7c1 r8c3} - r8c6{n3 .} ==> r9c5≠9
naked-single ==> r9c5=1
biv-chain[3]: r9c4{n8 n5} - r7c5{n5 n9} - r7c9{n9 n8} ==> r7c4≠8, r7c6≠8, r9c7≠8
hidden-single-in-a-block ==> r7c9=8
hidden-single-in-a-block ==> r6c7=8
naked-single ==> r6c2=4
naked-single ==> r5c3=8
naked-single ==> r7c2=1
hidden-single-in-a-block ==> r3c2=8
hidden-single-in-a-block ==> r3c1=6
hidden-single-in-a-block ==> r9c2=6
hidden-single-in-a-column ==> r1c2=2
hidden-single-in-a-block ==> r4c6=8
hidden-single-in-a-column ==> r9c4=8
hidden-single-in-a-block ==> r2c1=4
hidden-single-in-a-block ==> r7c3=4
hidden-single-in-a-row ==> r5c5=4
hidden-single-in-a-block ==> r4c5=6
naked-single ==> r4c8=7
naked-single ==> r5c8=6
whip[1]: b8n5{r7c5 .} ==> r7c1≠5
whip[1]: c2n5{r5 .} ==> r5c1≠5
naked-pairs-in-a-column: c1{r5 r7}{n3 n9} ==> r9c1≠9, r1c1≠9
finned-x-wing-in-columns: n9{c1 c6}{r5 r7} ==> r7c5≠9
stte
2) Starting from the resolution state after Singles and whips[1], we quickly find
two anti-tridagon patterns on different cells in b8 and b9:
- Code: Select all
naked-pairs-in-a-block: b4{r5c3 r6c2}{n4 n8} ==> r6c1≠4, r4c3≠8
naked-single ==> r6c1=7
179 g-candidates, 922 csp-glinks and 547 non-csp glinks
+-------------------+-------------------+-------------------+
! 1239 125 12359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 3569 3569 !
! 369 568 3589 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 12 9 12 ! 35678 356 3578 ! 4 3567 3568 !
! 5 3 48 ! 6789 469 789 ! 1 679 2 !
! 7 48 6 ! 2 3459 1 ! 3589 359 3589 !
+-------------------+-------------------+-------------------+
! 1349 145 13459 ! 35789 1359 35789 ! 6 2 34589 !
! 8 7 23459 ! 3569 23569 359 ! 359 1 3459 !
! 12369 1256 12359 ! 3589 12359 4 ! 3589 359 7 !
+-------------------+-------------------+-------------------+
OR5-anti-tridagon[12] for digits 3, 5 and 9 in blocks:
b2, with cells: r1c5, r2c6, r3c4
b3, with cells: r1c9, r2c8, r3c7
b8, with cells: r7c5, r8c6, r9c4
b9, with cells: r7c9, r8c7, r9c8
with 5 guardians: n6r2c8 n1r7c5 n4r7c9 n8r7c9 n8r9c4
OR8-anti-tridagon[12] for digits 3, 5 and 9 in blocks:
b2, with cells: r1c5, r2c6, r3c4
b3, with cells: r1c9, r2c8, r3c7
b8, with cells: r9c5, r7c6, r8c4
b9, with cells: r9c8, r7c9, r8c7
with 8 guardians: n6r2c8 n7r7c6 n8r7c6 n4r7c9 n8r7c9 n6r8c4 n1r9c5 n2r9c5
- Code: Select all
biv-chain[3]: r2c2{n5 n4} - b4n4{r6c2 r5c3} - c3n8{r5 r3} ==> r3c3≠5
z-chain[3]: r9n6{c1 c2} - c2n2{r9 r1} - c2n1{r1 .} ==> r9c1≠1
t-whip[4]: r2c2{n5 n4} - r6c2{n4 n8} - b6n8{r6c9 r4c9} - c9n6{r4 .} ==> r2c9≠5
t-whip[4]: r6n5{c9 c5} - r6n4{c5 c2} - r2c2{n4 n5} - r1n5{c3 .} ==> r4c9≠5
whip[7]: r7n7{c4 c6} - b8n8{r7c6 r9c4} - c7n8{r9 r6} - r6c2{n8 n4} - r2c2{n4 n5} - c6n5{r2 r4} - r4n8{c6 .} ==> r7c4≠5
g-whip[7]: r8n4{c9 c3} - r5n4{c3 c5} - r6n4{c5 c2} - r6n8{c2 c789} - r4c9{n8 n6} - c5n6{r4 r8} - r8n2{c5 .} ==> r8c9≠3
g-whip[8]: b6n8{r4c9 r6c789} - r6c2{n8 n4} - r5n4{c3 c5} - c5n6{r5 r8} - c5n2{r8 r9} - c5n1{r9 r7} - r7c2{n1 n5} - r2c2{n5 .} ==> r4c9≠6
hidden-single-in-a-column ==> r2c9=6
At least one candidate of a previous Trid-OR5-relation has just been eliminated.
There remains a Trid-OR4-relation between candidates: n1r7c5 n4r7c9 n8r7c9 n8r9c4- Code: Select all
+-------------------+-------------------+-------------------+
! 1239 125 12359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 359 6 !
! 369 568 389 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 12 9 12 ! 35678 356 3578 ! 4 3567 38 !
! 5 3 48 ! 6789 469 789 ! 1 679 2 !
! 7 48 6 ! 2 3459 1 ! 3589 359 3589 !
+-------------------+-------------------+-------------------+
! 1349 145 13459 ! 3789 1359 35789 ! 6 2 34589 !
! 8 7 23459 ! 3569 23569 359 ! 359 1 459 !
! 2369 1256 12359 ! 3589 12359 4 ! 3589 359 7 !
+-------------------+-------------------+-------------------+
At this point, notice that the Trid-OR4-relation is degenerated and CSP-Rules wouldn't have found if it was not inherited from the previous Trid-OR5-relation.
hidden-pairs-in-a-column: c8{n6 n7}{r4 r5} ==> r5c8≠9, r4c8≠5, r4c8≠3
whip[1]: b6n5{r6c9 .} ==> r6c5≠5
whip[1]: b6n9{r6c9 .} ==> r6c5≠9
whip[5]: c3n8{r3 r5} - r5n4{c3 c5} - r6c5{n4 n3} - r1n3{c5 c9} - r4n3{c9 .} ==> r3c3≠3
Trid-OR4-whip[6]: r6c5{n3 n4} - r6c2{n4 n8} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n1r7c5 | n4r7c9}} - c1n4{r7 r2} - c2n4{r2 .} ==> r7c5≠3
Trid-OR4-whip[7]: c1n4{r7 r2} - r2c2{n4 n5} - r7c2{n5 n4} - r6c2{n4 n8} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n4r7c9 | n1r7c5}} - r7c5{n5 .} ==> r7c1≠1
Trid-OR4-whip[7]: r2c2{n5 n4} - c1n4{r2 r7} - c3n4{r8 r5} - r6c2{n4 n8} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n4r7c9 | n1r7c5}} - r7c2{n1 .} ==> r9c2≠5
Trid-OR4-whip[7]: r2c2{n5 n4} - c1n4{r2 r7} - c3n4{r8 r5} - r6c2{n4 n8} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n4r7c9 | n1r7c5}} - r7c2{n1 .} ==> r1c2≠5biv-chain[3]: r1c2{n2 n1} - c1n1{r1 r4} - b4n2{r4c1 r4c3} ==> r1c3≠2
Trid-OR4-whip[7]: r2c2{n5 n4} - c1n4{r2 r7} - c3n4{r8 r5} - r6c2{n4 n8} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n4r7c9 | n1r7c5}} - r7c2{n1 .} ==> r3c2≠5z-chain[5]: c1n1{r1 r4} - c1n2{r4 r9} - c1n6{r9 r3} - r3c2{n6 n8} - r3c3{n8 .} ==> r1c1≠9
Trid-OR4-whip[8]: c2n1{r9 r1} - c2n2{r1 r9} - c2n6{r9 r3} - c2n8{r3 r6} - c7n8{r6 r9} - OR4{{n8r9c4 n8r7c9 n1r7c5 | n4r7c9}} - c1n4{r7 r2} - c2n4{r2 .} ==> r7c3≠1whip[9]: r7n7{c6 c4} - r7n8{c4 c9} - c7n8{r9 r6} - r6c2{n8 n4} - r2c2{n4 n5} - r7c2{n5 n1} - r7c5{n1 n5} - r8c6{n5 n3} - r2c6{n3 .} ==> r7c6≠9
whip[9]: r7n7{c4 c6} - b8n8{r7c6 r9c4} - c7n8{r9 r6} - r6c2{n8 n4} - r2c2{n4 n5} - r7c2{n5 n1} - r7c5{n1 n5} - c6n5{r8 r4} - r4n8{c6 .} ==> r7c4≠9
whip[10]: r8n4{c9 c3} - b4n4{r5c3 r6c2} - r6c5{n4 n3} - b6n3{r6c7 r4c9} - r1c9{n3 n5} - r3n5{c7 c4} - b2n3{r3c4 r2c6} - b3n3{r2c8 r3c7} - r8c7{n3 n5} - r8c6{n5 .} ==> r8c9≠9
whip[10]: r7n7{c6 c4} - r7n8{c4 c9} - c7n8{r9 r6} - r6c2{n8 n4} - r2c2{n4 n5} - r2c6{n5 n9} - r8c6{n9 n5} - r8c9{n5 n4} - c3n4{r8 r7} - r7n5{c3 .} ==> r7c6≠3
whip[7]: c1n6{r9 r3} - r3c2{n6 n8} - r6c2{n8 n4} - r6c5{n4 n3} - c8n3{r6 r2} - c6n3{r2 r8} - c7n3{r8 .} ==> r9c1≠3
t-whip[11]: r8n4{c9 c3} - c1n4{r7 r2} - c2n4{r2 r6} - r7n4{c2 c9} - b9n8{r7c9 r9c7} - r6n8{c7 c9} - c9n9{r6 r1} - r2n9{c8 c6} - r2n3{c6 c8} - b9n3{r9c8 r8c7} - r8c6{n3 .} ==> r8c9≠5
naked-single ==> r8c9=4
At least one candidate of a previous Trid-OR4-relation has just been eliminated.
There remains a Trid-OR3-relation between candidates: n1r7c5 n8r7c9 n8r9c4- Code: Select all
+-------------------+-------------------+-------------------+
! 123 12 1359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 359 6 !
! 369 68 89 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 12 9 12 ! 35678 356 3578 ! 4 67 38 !
! 5 3 48 ! 6789 469 789 ! 1 67 2 !
! 7 48 6 ! 2 34 1 ! 3589 359 3589 !
+-------------------+-------------------+-------------------+
! 349 145 3459 ! 378 159 578 ! 6 2 3589 !
! 8 7 2359 ! 3569 23569 359 ! 359 1 4 !
! 269 126 12359 ! 3589 12359 4 ! 3589 359 7 !
+-------------------+-------------------+-------------------+
Trid-OR3-whip[5]: r6c2{n8 n4} - r2c2{n4 n5} - r7c2{n5 n1} - OR3{{n1r7c5 n8r7c9 | n8r9c4}} - c7n8{r9 .} ==> r6c9≠8finned-x-wing-in-columns: n8{c9 c6}{r7 r4} ==> r4c4≠8
Trid-OR3-whip[5]: c2n5{r7 r2} - c6n5{r2 r4} - r4n8{c6 c9} - OR3{{n8r7c9 n1r7c5 | n8r9c4}} - c7n8{r9 .} ==> r7c5≠5whip[7]: r7n7{c4 c6} - r7n8{c6 c9} - c7n8{r9 r6} - r6c2{n8 n4} - r2c2{n4 n5} - r7n5{c2 c3} - c3n4{r7 .} ==> r7c4≠3
whip[7]: b9n8{r9c7 r7c9} - r4n8{c9 c6} - r5n8{c4 c3} - r3c3{n8 n9} - b7n9{r7c3 r7c1} - r7n3{c1 c3} - c3n4{r7 .} ==> r9c7≠9
whip[7]: r9n6{c1 c2} - r3c2{n6 n8} - r3c3{n8 n9} - c1n9{r3 r7} - r7c5{n9 n1} - c2n1{r7 r1} - r1n2{c2 .} ==> r9c1≠2
hidden-pairs-in-a-column: c1{n1 n2}{r1 r4} ==> r1c1≠3
naked-pairs-in-a-block: b1{r1c1 r1c2}{n1 n2} ==> r1c3≠1
t-whip[9]: b9n8{r9c7 r7c9} - r4c9{n8 n3} - b5n3{r4c4 r6c5} - r6n4{c5 c2} - r2c2{n4 n5} - r7c2{n5 n1} - r7c5{n1 n9} - r1c5{n9 n5} - b3n5{r1c9 .} ==> r9c7≠5
PUZZLE 0 IS NOT SOLVED. 50 VALUES MISSING.
Final resolution state:
- Code: Select all
+-------------------+-------------------+-------------------+
! 12 12 359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 359 6 !
! 369 68 89 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 12 9 12 ! 3567 356 3578 ! 4 67 38 !
! 5 3 48 ! 6789 469 789 ! 1 67 2 !
! 7 48 6 ! 2 34 1 ! 3589 359 359 !
+-------------------+-------------------+-------------------+
! 349 145 3459 ! 78 19 578 ! 6 2 3589 !
! 8 7 2359 ! 3569 23569 359 ! 359 1 4 !
! 69 126 12359 ! 3589 12359 4 ! 38 359 7 !
+-------------------+-------------------+-------------------+
After all the sweating, we're left with a puzzle in T&E(W2, 1) - the initial puzzle is in T&E(W2, 2).
Of course, we can still use eleven replacement to finish the work:
- Code: Select all
(solve-sukaku-grid-by-eleven-replacement3 3 5 9
1 5
2 6
3 4
+-------------------+-------------------+-------------------+
! 12 12 359 ! 4 359 6 ! 7 8 359 !
! 349 45 7 ! 1 8 359 ! 2 359 6 !
! 369 68 89 ! 359 7 2 ! 359 4 1 !
+-------------------+-------------------+-------------------+
! 12 9 12 ! 3567 356 3578 ! 4 67 38 !
! 5 3 48 ! 6789 469 789 ! 1 67 2 !
! 7 48 6 ! 2 34 1 ! 3589 359 359 !
+-------------------+-------------------+-------------------+
! 349 145 3459 ! 78 19 578 ! 6 2 3589 !
! 8 7 2359 ! 3569 23569 359 ! 359 1 4 !
! 69 126 12359 ! 3589 12359 4 ! 38 359 7 !
+-------------------+-------------------+-------------------+
)
- Code: Select all
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 3, 5 and 9 in 3 cells r1c5, r2c6 and r3c4,
the resolution state is:
+----------------------+----------------------+----------------------+
! 12 12 359 ! 4 3 6 ! 7 8 359 !
! 3594 4359 7 ! 1 8 5 ! 2 359 6 !
! 3596 68 8359 ! 9 7 2 ! 359 4 1 !
+----------------------+----------------------+----------------------+
! 12 359 12 ! 35967 3596 35978 ! 4 67 3598 !
! 359 359 48 ! 678359 46359 78359 ! 1 67 2 !
! 7 48 6 ! 2 3594 1 ! 3598 359 359 !
+----------------------+----------------------+----------------------+
! 3594 14359 3594 ! 78 1359 35978 ! 6 2 3598 !
! 8 7 2359 ! 3596 23596 359 ! 359 1 4 !
! 6359 126 12359 ! 3598 12359 4 ! 3598 359 7 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
and we find a solution in W6:
whip[1]: r6n3{c9 .} ==> r4c9≠3
z-chain[4]: r8c6{n9 n3} - r8c7{n3 n5} - b3n5{r3c7 r1c9} - r1n9{c9 .} ==> r8c3≠9
t-whip[5]: c3n3{r9 r3} - r3n8{c3 c2} - c2n6{r3 r9} - c2n2{r9 r1} - c2n1{r1 .} ==> r7c2≠3
whip[5]: c7n8{r6 r9} - c7n9{r9 r8} - r8c6{n9 n3} - r9c4{n3 n5} - c8n5{r9 .} ==> r6c7≠5
t-whip[3]: c8n5{r6 r9} - c7n5{r9 r3} - b3n3{r3c7 .} ==> r6c8≠3
biv-chain[3]: r6n3{c9 c7} - r3c7{n3 n5} - r1c9{n5 n9} ==> r6c9≠9
t-whip[5]: b1n5{r3c3 r3c1} - r3n6{c1 c2} - c2n8{r3 r6} - c7n8{r6 r9} - c7n5{r9 .} ==> r8c3≠5
biv-chain[3]: c5n2{r9 r8} - r8c3{n2 n3} - r8c6{n3 n9} ==> r9c5≠9
biv-chain[4]: c5n1{r7 r9} - b8n2{r9c5 r8c5} - r8c3{n2 n3} - r8c6{n3 n9} ==> r7c5≠9
whip[5]: c7n8{r6 r9} - c7n9{r9 r8} - b8n9{r8c6 r7c6} - r7n8{c6 c4} - r7n7{c4 .} ==> r6c7≠3
hidden-single-in-a-block ==> r6c9=3
z-chain[6]: r1n5{c9 c3} - b7n5{r9c3 r9c1} - r9n6{c1 c2} - r3c2{n6 n8} - r6n8{c2 c7} - b9n8{r9c7 .} ==> r7c9≠5
biv-chain[3]: b3n9{r2c8 r1c9} - c9n5{r1 r4} - r6c8{n5 n9} ==> r9c8≠9
biv-chain[4]: c8n3{r9 r2} - b3n9{r2c8 r1c9} - r7c9{n9 n8} - r9n8{c7 c4} ==> r9c4≠3
biv-chain[4]: c8n9{r2 r6} - r6n5{c8 c5} - r6n4{c5 c2} - b1n4{r2c2 r2c1} ==> r2c1≠9
biv-chain[4]: r7c9{n9 n8} - b6n8{r4c9 r6c7} - r6c2{n8 n4} - c3n4{r5 r7} ==> r7c3≠9
biv-chain[3]: c3n9{r9 r1} - r2n9{c2 c8} - c8n3{r2 r9} ==> r9c3≠3
t-whip[4]: r3c7{n3 n5} - r1c9{n5 n9} - c3n9{r1 r9} - b9n9{r9c7 .} ==> r8c7≠3
whip[1]: b9n3{r9c8 .} ==> r9c1≠3
biv-chain[4]: c7n3{r3 r9} - c7n8{r9 r6} - c2n8{r6 r3} - b1n6{r3c2 r3c1} ==> r3c1≠3
z-chain[5]: r7n5{c3 c5} - c5n1{r7 r9} - r9n2{c5 c2} - c3n2{r8 r4} - c3n1{r4 .} ==> r9c3≠5
z-chain[5]: c3n4{r7 r5} - c3n8{r5 r3} - c3n5{r3 r1} - b3n5{r1c9 r3c7} - r3n3{c7 .} ==> r7c3≠3
biv-chain[4]: r8c7{n9 n5} - r3c7{n5 n3} - c3n3{r3 r8} - r8n2{c3 c5} ==> r8c5≠9
whip[1]: b8n9{r8c6 .} ==> r4c6≠9, r5c6≠9
biv-chain[4]: r9n8{c4 c7} - c7n3{r9 r3} - c3n3{r3 r8} - r7n3{c1 c6} ==> r7c6≠8
whip[1]: b8n8{r9c4 .} ==> r5c4≠8
biv-chain[3]: r7n7{c6 c4} - r7n8{c4 c9} - r4n8{c9 c6} ==> r4c6≠7
biv-chain[4]: c6n8{r5 r4} - c9n8{r4 r7} - r7c4{n8 n7} - c6n7{r7 r5} ==> r5c6≠3
biv-chain[4]: r5c6{n7 n8} - c3n8{r5 r3} - c3n3{r3 r8} - r7n3{c1 c6} ==> r7c6≠7
stte