......51..7.3............8...7.51....2....6.3.........4..6..2..1.5.4.............
*------------------------------------------*
| 3 4 689 | 7 2 689 | 5 1 69 |
| 5 7 689 | 3 1 689 |ha9-4 246 b2469 |
| 2 1 69 | 5 69 4 | 3 8 7 |
|-----------+-------------+----------------|
| 6 3 7 |d289 5 1 | c489 24 c2489 |
| 89 2 1 | 4 89 7 | 6 5 3 |
| 89 5 4 | 289 36 36 | 1 7 289 |
|-----------+-------------+----------------|
| 4 8 3 | 6 7 5 | 2 9 1 |
| 1 69 5 |e89 4 2 | 7 3 f68 |
| 7 69 2 | 1 389 39 | g48 46 5 |
*------------------------------------------*
4 r2c7 - r2c9 = (4-8) r4c9 \
|
4 r2c7 - 9 r2c7 = (9-8) r4c7 = (8) r4c4 - r8c4 = r8c9 - (8=4) r9c7 - 4 r2c7 => - 4 r2c7; stte
+------------------+--------------------+---------------------+
| 3 4 689 | 7 2 689 | 5 1 69 |
| 5 7 689 | 3 1 689 | 9-4 246 B2469 |
| 2 1 69 | 5 69 4 | 3 8 7 |
+------------------+--------------------+---------------------+
| 6 3 7 | 289* 5 1 | 489* 24 A2489# |
| 89 2 1 | 4 89* 7 | 6 5 3 |
| 89 5 4 | a289# 36 36 | 1 7 289 |
+------------------+--------------------+---------------------+
| 4 8 3 | 6 7 5 | 2 9 1 |
| 1 69 5 | b89 4 2 | 7 3 c68 |
| 7 69 2 | 1 389* 39 | d48* 46 5 |
+------------------+--------------------+---------------------+
3 4 689 | 7 2 689 | 5 1 69
5 7 689 | 3 1 689 | 9-4 246 f2469
2 1 69 | 5 69 4 | 3 8 7
------------------------+----------------------+---------------------
6 3 7 |d289 5 1 | 489 24 e2489
89 2 1 | 4 89 7 | 6 5 3
89 5 4 | 289 36 36 | 1 7 289
------------------------+----------------------+---------------------
4 8 3 | 6 7 5 | 2 9 1
1 69 5 |c89 4 2 | 7 3 b68
7 69 2 | 1 389 39 |a48 46 5
pjb wrote : (4=8)r9c7 - (r4c7)r8c9 = r8c4 - r4c4 = (8-4)r4c9 = r2c9 => -4 r2c7; stte
*------------------------------------------------------------*
| 3 4 689 | 7 2 689 | 5 1 69 |
| 5 7 689 | 3 1 689 | a9-4 246 g2469 |
| 2 1 69 | 5 69 4 | 3 8 7 |
*-------------------+-------------------+--------------------|
| 6 3 7 |d289 5 1 |bc489 e24 f2489 |
| 89 2 1 | 4 89 7 | 6 5 3 |
| 89 5 4 | 289 36 36 | 1 7 289 |
*-------------------+-------------------+--------------------|
| 4 8 3 | 6 7 5 | 2 9 1 |
| 1 69 5 |d89 4 2 | 7 3 68 |
| 7 69 2 | 1 c389 c39 |bc48 46 5 |
*------------------------------------------------------------*
*-------------------------------------------------------------*
| 3 4 689 | 7 2 689 | 5 1 b69 |
| 5 7 689 | 3 1 689 | c49 246 2469 |
| 2 1 69 | 5 69 4 | 3 8 7 |
|------------------+--------------------+---------------------|
| 6 3 7 | 2-89 5 1 | d89-4 24 2489 |
| 89 2 1 | 4 89 7 | 6 5 3 |
| 89 5 4 | 289 36 36 | 1 7 289 |
|------------------+--------------------+---------------------|
| 4 8 3 | 6 7 5 | 2 9 1 |
| 1 69 5 |ga89 4 2 | 7 3 fb68 |
| 7 69 2 | 1 389 39 | e48 46 5 |
*-------------------------------------------------------------*
eleven wrote:
- Code: Select all
*-------------------------------------------------------------*
| 3 4 689 | 7 2 689 | 5 1 b69 |
| 5 7 689 | 3 1 689 | c49 246 2469 |
| 2 1 69 | 5 69 4 | 3 8 7 |
|------------------+--------------------+---------------------|
| 6 3 7 | 2-89 5 1 | d89-4 24 2489 |
| 89 2 1 | 4 89 7 | 6 5 3 |
| 89 5 4 | 289 36 36 | 1 7 289 |
|------------------+--------------------+---------------------|
| 4 8 3 | 6 7 5 | 2 9 1 |
| 1 69 5 |ga89 4 2 | 7 3 fb68 |
| 7 69 2 | 1 389 39 | e48 46 5 |
*-------------------------------------------------------------*
Remote pair 89 in r4c7,r8c4:
(9=8)r8c4 - (8=9)r18c9 - r2c7 = (9-8)r4c7 = r9c7 - r8c9 = 8r8c4, loop => -89r4c4, stte
eleven wrote : (9=8)r8c4 - (8=9)r18c9 - r2c7 = (9-8)r4c7 = r9c7 - r8c9 = 8r8c4, loop
Steve G48 wrote I'm not so sure that I'd call it a loop so much as a chain within a chain. In any case, the loop aspect of it also gives you -69r2c9.
Leren wrote:Steve G48 wrote I'm not so sure that I'd call it a loop so much as a chain within a chain. In any case, the loop aspect of it also gives you -69r2c9.
I doesn't look like a loop to me at all, I've just asked eleven to have a look at it. - 69 r2c9 is correct because of the 6 cell DP (689) in r12c479, but that doesn't solve the puzzle.
Leren
pjb wrote : Leren. You will have to help. I can't see the problem.
SteveG48 wrote :However, if we rewrite it as [(9=8)r8c4 - (8=9)r18c9 - r2c7 = 9r4c7] - [8r4c7 = r9c7 - r8c9 = 8r8c4], breaking it into 2 parts, then we get Eleven's eliminations.
Leren wrote:I must be having a bad day. I can see that shows - 89 r4c4, which maybe solves the puzzle, but it doesn't show - 4 r4c7, which is indicated on eleven's diagram.
Leren
PS Actually there is another embedded chain in there which does give - 4 r4c7.
It's (8) r8c4 = r8c9 - r9c7 = 8 r4c7 and if you combine this with [(9=8)r8c4 - (8=9)r18c9 - r2c7 = 9r4c7] you get - 4 r4c7. As written the original move is a notational nightmare, but all the eliminations are valid ... somehow.
Leren