.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 9 6 2 ! 1 48 5 ! 3 48 7 !
! 5 47 47 ! 3 89 2 ! 89 1 6 !
! 8 1 3 ! 469 7 69 ! 49 5 2 !
+-------------------+-------------------+-------------------+
! 2 3 89 ! 7 5 4 ! 6 89 1 !
! 7 5 4689 ! 689 69 1 ! 2 3 48 !
! 46 489 1 ! 689 2 3 ! 7 489 5 !
+-------------------+-------------------+-------------------+
! 3 4789 5 ! 2 1 789 ! 48 6 489 !
! 1 2 689 ! 469 469 689 ! 5 7 3 !
! 46 4789 46789 ! 5 3 6789 ! 1 2 489 !
+-------------------+-------------------+-------------------+
87 candidates.
Simplest-first solution in BC4: Show biv-chain[2]: r5n4{c9 c3} - c1n4{r6 r9} ==> r9c9≠4
whip[1]: r9n4{c3 .} ==> r7c2≠4
biv-chain[4]: r6c1{n6 n4} - c8n4{r6 r1} - c5n4{r1 r8} - c5n6{r8 r5} ==> r5c3≠6, r6c4≠6
singles ==> r6c1=6, r9c1=4
biv-chain[3]: r6n4{c2 c8} - r5c9{n4 n8} - b5n8{r5c4 r6c4} ==> r6c2≠8
whip[1]: c2n8{r9 .} ==> r8c3≠8, r9c3≠8
hidden-single-in-a-row ==> r8c6=8
biv-chain[4]: b9n9{r9c9 r7c9} - c9n4{r7 r5} - c3n4{r5 r2} - c3n7{r2 r9} ==> r9c3≠9
biv-chain[4]: c4n4{r8 r3} - b2n6{r3c4 r3c6} - r9n6{c6 c3} - r8c3{n6 n9} ==> r8c4≠9
biv-chain[4]: r1c8{n8 n4} - c5n4{r1 r8} - r8n9{c5 c3} - r4n9{c3 c8} ==> r4c8≠8
singles ==> r4c8=9, r4c3=8
biv-chain[4]: r1n4{c5 c8} - r6n4{c8 c2} - r5c3{n4 n9} - r8n9{c3 c5} ==> r8c5≠4
stte
There's no 1-step solution with whips of reasonable length wrt BC4. The shortest requires length 8, e.g.:
whip[8]: r3n4{c7 c4} - c5n4{r1 r8} - c5n6{r8 r5} - c4n6{r6 r8} - c3n6{r8 r9} - c3n7{r9 r2} - c3n4{r2 r5} - b6n4{r5c9 .} ==> r1c8≠4stte
There are many 2-step solutions in BC6, e.g.:
biv-chain[4]: r6n6{c1 c4} - c5n6{r5 r8} - c5n4{r8 r1} - c8n4{r1 r6} ==> r6c1≠4singles ==> r6c1=6, r9c1=4
biv-chain[6]: r3c7{n4 n9} - r3c6{n9 n6} - r9n6{c6 c3} - c3n7{r9 r2} - c3n4{r2 r5} - b6n4{r5c9 r6c8} ==> r1c8≠4stte
OR:
biv-chain[4]: r6c1{n6 n4} - c8n4{r6 r1} - c5n4{r1 r8} - c5n6{r8 r5} ==> r5c3≠6, r6c4≠6singles ==> r6c1=6, r9c1=4
biv-chain[6]: r3c7{n4 n9} - r3c6{n9 n6} - r9n6{c6 c3} - c3n7{r9 r2} - c3n4{r2 r5} - b6n4{r5c9 r6c8} ==> r1c8≠4stte
Same eliminations as RSW, but shorter patterns (mere bivalue-chains instead of ALS chains).