17April21

Post puzzles for others to solve here.

17April21

Postby Yogi » Sat Apr 17, 2021 10:15 pm

000007460003500000010000000700600020000010000000000008650400000000000803000000106
I was going to attach an image to go with this puzzle but it was prevented. The error message says the board attachment quota has been reached.
I have not heard about this before.
User avatar
Yogi
2017 Supporter
 
Posts: 349
Joined: 05 December 2015
Location: New Zealand

Re: 17April21

Postby jco » Sat Apr 17, 2021 10:29 pm

Hello Yogi,

You can read about it in the topic "Forum questions and feedback" (http://forum.enjoysudoku.com/attachment-limit-reached-t38602.html#p300105). This restriction was announced in January 12 (see the link). In my view, a picture is the less useful way to get the puzzle's information anyway. I always need either the board with the givens or the 81 sequence of characters to work with.
Also, one can see many old posts in the forum without the pictures, so pictures never stayed for long.

Regards,
jco

Edit: there is the option of leaving a link to somewhere else, but IMO a board or the 81 characters is a more useful way.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: 17April21

Postby pjb » Sat Apr 17, 2021 11:01 pm

Code: Select all
 2589    289     2589   | 12389 b2389   7      | 4      6      1259   
 2489    67      3      | 5     b24689 b124689 | 279    1789   1279   
 24589   1       67     |b289   b24689 b24689  | 23579  3789   2579   
------------------------+----------------------+---------------------
 7       3489    14589  | 6      34589  34589  | 359    2      1459   
 23589   234689  245689 | 23789  1      234589 | 35679  379    4579   
 12359   23469   124569 | 2379   234579 23459  | 35679  1379   8     
------------------------+----------------------+---------------------
 6       5      a18     | 4     a38     38-1   |a279   a79    a279   
 129     2479    12479  | 1279   25679  12569  | 8      45     3     
 2389    234789  24789  | 2789   25789  2589   | 1      45     6     

(1=3)r7c35789 - (3=1)r1c5, r2c56, r3c456 => -1 r7c6; stte

or Finned swordfish of 1s (r247\c369), fin at r2c8 => -1 r1c9; stte

Phil
Last edited by pjb on Sun Apr 18, 2021 2:43 am, edited 1 time in total.
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: 17April21

Postby RSW » Sat Apr 17, 2021 11:36 pm

Code: Select all
 +---------------------+----------------------+-----------------+
 | 2589  289   *2589   |F12389 2389  *7       | 4     6   *1259 |
 | 2489  67     3      | 5     24689  24689-1 | 279   1789 1279 |
 | 24589 1      67     | 289   24689  24689   | 23579 3789 2579 |
 +---------------------+----------------------+-----------------+
 | 7     3489  *14589  | 6     34589 *34589   | 359   2   *1459 |
 | 23589 234689 245689 | 23789 1      234589  | 35679 379  4579 |
 | 12359 23469  124569 | 2379  234579 23459   | 35679 1379 8    |
 +---------------------+----------------------+-----------------+
 | 6     5     *18     | 4     38    *138     | 279   79  *279  |
 | 129   2479   12479  | 1279  25679  12569   | 8     45   3    |
 | 2389  234789 24789  | 2789  25789  2589    | 1     45   6    |
 +---------------------+----------------------+-----------------+

Sashimi-Swordfish: (1)r147c3(4)69 => -1r2c6; stte
RSW
 
Posts: 669
Joined: 01 December 2018
Location: Western Canada

Re: 17April21

Postby Leren » Sun Apr 18, 2021 12:30 am

Code: Select all
*---------------------------------------------------------------*
| 2589  289    2589   |b12389 c2389    7      | 4     6    1259 |
| 2489  67     3      | 5      24689  a124689 | 279   1789 1279 |
| 24589 1      67     |289     24689   24689  | 23579 3789 2579 |
|---------------------+-----------------------+-----------------|
| 7     3489   14589  | 6      34589   34589  | 359   2    1459 |
| 23589 234689 245689 | 23789  1       234589 | 35679 379  4579 |
| 12359 23469  124569 | 2379   234579  23459  | 35679 1379 8    |
|---------------------+-----------------------+-----------------|
| 6     5      18     | 4     d38     e38-1   | 279   79   279  |
| 129   2479   12479  | 1279   25679   12569  | 8     45   3    |
| 2389  234789 24789  | 2789   25789   2589   | 1     45   6    |
*---------------------------------------------------------------*

L2 Wing : (1) r2c6 = (1-3) r1c4 = r1c5 - r7c5 = (3) r7c6 => - 1 r7c6; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: 17April21

Postby denis_berthier » Sun Apr 18, 2021 5:33 am

Yogi wrote:000007460003500000010000000700600020000010000000000008650400000000000803000000106
I was going to attach an image to go with this puzzle but it was prevented. The error message says the board attachment quota has been reached.
I have not heard about this before.


Hi Yogi,
Puzzles are generally presented here in two forms: grid form and string form. The SER is also often given in order to provide a vague idea of difficulty:
Code: Select all
     +-------+-------+-------+
     ! 0 0 0 ! 0 0 7 ! 4 6 0 !
     ! 0 0 3 ! 5 0 0 ! 0 0 0 !
     ! 0 1 0 ! 0 0 0 ! 0 0 0 !
     +-------+-------+-------+
     ! 7 0 0 ! 6 0 0 ! 0 2 0 !
     ! 0 0 0 ! 0 1 0 ! 0 0 0 !
     ! 0 0 0 ! 0 0 0 ! 0 0 8 !
     +-------+-------+-------+
     ! 6 5 0 ! 4 0 0 ! 0 0 0 !
     ! 0 0 0 ! 0 0 0 ! 8 0 3 !
     ! 0 0 0 ! 0 0 0 ! 1 0 6 !
     +-------+-------+-------+

000007460003500000010000000700600020000010000000000008650400000000000803000000106
SER = 6.7


A dot is generally used instead of a 0, because it makes it easier to see the givens (which is a must when they have an interesting pattern).
Code: Select all
     +-------+-------+-------+
     ! . . . ! . . 7 ! 4 6 . !
     ! . . 3 ! 5 . . ! . . . !
     ! . 1 . ! . . . ! . . . !
     +-------+-------+-------+
     ! 7 . . ! 6 . . ! . 2 . !
     ! . . . ! . 1 . ! . . . !
     ! . . . ! . . . ! . . 8 !
     +-------+-------+-------+
     ! 6 5 . ! 4 . . ! . . . !
     ! . . . ! . . . ! 8 . 3 !
     ! . . . ! . . . ! 1 . 6 !
     +-------+-------+-------+

.....746...35......1.......7..6...2.....1............865.4...........8.3......1.6
SER = 6.7

This is much less costly, in terms of storage, than an image.


As to how to produce such graphics, it's easy to keep an empty grid and to fill manually a copy of it with the givens. Alternatively, you can download CSP-Rules and use the "pretty-print-sudoku-string" function. (Probably, other solvers can do the same). The command:
(pretty-print ".....746...35......1.......7..6...2.....1............865.4...........8.3......1.6")
will give you the grid:
Code: Select all
     +-------+-------+-------+
     ! . . . ! . . 7 ! 4 6 . !
     ! . . 3 ! 5 . . ! . . . !
     ! . 1 . ! . . . ! . . . !
     +-------+-------+-------+
     ! 7 . . ! 6 . . ! . 2 . !
     ! . . . ! . 1 . ! . . . !
     ! . . . ! . . . ! . . 8 !
     +-------+-------+-------+
     ! 6 5 . ! 4 . . ! . . . !
     ! . . . ! . . . ! 8 . 3 !
     ! . . . ! . . . ! 1 . 6 !
     +-------+-------+-------+

On this forum, you have to surround this grid by "[code ]" and "[/code ]" tags (without the spaces) in order to see it properly formatted.

However, the most useful starting point for most players is the resolution state after Singles (which SudoRules will also automatically provide at the start of resolution);
Code: Select all
   +-------------------------+-------------------------+-------------------------+
   ! 2589    289     2589    ! 12389   2389    7       ! 4       6       1259    !
   ! 2489    246789  3       ! 5       24689   124689  ! 279     1789    1279    !
   ! 24589   1       2456789 ! 2389    234689  234689  ! 23579   35789   2579    !
   +-------------------------+-------------------------+-------------------------+
   ! 7       3489    14589   ! 6       34589   34589   ! 359     2       1459    !
   ! 234589  234689  245689  ! 23789   1       234589  ! 35679   34579   4579    !
   ! 123459  23469   124569  ! 2379    234579  23459   ! 35679   134579  8       !
   +-------------------------+-------------------------+-------------------------+
   ! 6       5       12789   ! 4       23789   12389   ! 279     79      279     !
   ! 1249    2479    12479   ! 1279    25679   12569   ! 8       4579    3       !
   ! 23489   234789  24789   ! 23789   235789  23589   ! 1       4579    6       !
   +-------------------------+-------------------------+-------------------------+




Now, for the solution. Some cleaning with whips[1]:
Code: Select all
whip[1]: r7n3{c6 .} ==> r9c6 ≠ 3, r9c4 ≠ 3, r9c5 ≠ 3
whip[1]: c9n4{r5 .} ==> r6c8 ≠ 4, r5c8 ≠ 4
whip[1]: r1n3{c5 .} ==> r3c6 ≠ 3, r3c4 ≠ 3, r3c5 ≠ 3
whip[1]: b9n5{r9c8 .} ==> r6c8 ≠ 5, r3c8 ≠ 5, r5c8 ≠ 5
whip[1]: b9n2{r7c9 .} ==> r7c6 ≠ 2, r7c3 ≠ 2, r7c5 ≠ 2

leads to the following resolution state:
Code: Select all
   +-------------------------+-------------------------+-------------------------+
   ! 2589    289     2589    ! 12389   2389    7       ! 4       6       1259    !
   ! 2489    246789  3       ! 5       24689   124689  ! 279     1789    1279    !
   ! 24589   1       2456789 ! 289     24689   24689   ! 23579   3789    2579    !
   +-------------------------+-------------------------+-------------------------+
   ! 7       3489    14589   ! 6       34589   34589   ! 359     2       1459    !
   ! 234589  234689  245689  ! 23789   1       234589  ! 35679   379     4579    !
   ! 123459  23469   124569  ! 2379    234579  23459   ! 35679   1379    8       !
   +-------------------------+-------------------------+-------------------------+
   ! 6       5       1789    ! 4       3789    1389    ! 279     79      279     !
   ! 1249    2479    12479   ! 1279    25679   12569   ! 8       4579    3       !
   ! 23489   234789  24789   ! 2789    25789   2589    ! 1       4579    6       !
   +-------------------------+-------------------------+-------------------------+


from which three Subsets give the solution:
Code: Select all
hidden-pairs-in-a-column: c8{n4 n5}{r8 r9} ==> r9c8 ≠ 9, r9c8 ≠ 7, r8c8 ≠ 9, r8c8 ≠ 7
whip[1]: b9n7{r7c9 .} ==> r7c3 ≠ 7, r7c5 ≠ 7
whip[1]: b9n9{r7c9 .} ==> r7c3 ≠ 9, r7c5 ≠ 9, r7c6 ≠ 9
hidden-pairs-in-a-block: b1{n6 n7}{r2c2 r3c3} ==> r3c3 ≠ 9, r3c3 ≠ 8, r3c3 ≠ 5, r3c3 ≠ 4, r3c3 ≠ 2, r2c2 ≠ 9, r2c2 ≠ 8, r2c2 ≠ 4, r2c2 ≠ 2
whip[1]: b1n4{r3c1 .} ==> r5c1 ≠ 4, r6c1 ≠ 4, r8c1 ≠ 4, r9c1 ≠ 4
finned-swordfish-in-columns: n1{c1 c8 c4}{r8 r6 r2} ==> r2c6 ≠ 1
stte

(This is basically the same solution as pjb and RSW.)
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: 17April21

Postby Leren » Sun Apr 18, 2021 6:57 am

Another reason I prefer . line format instead of 0 line format is that I use Excel a lot. If I'm not careful and just paste a 0 formatted line puzzle into a cell, Excel may recognise it as an 81 digit integer, truncate it to 15 decimal places and you end up with 7.46000350000001E+75 instead of the puzzle. I know there are simple ways around this, but you don't have to be careful if you use . format. Well, I've had my gripe for today, I feel better now :D . Leren
Leren
 
Posts: 5117
Joined: 03 June 2012


Return to Puzzles