Yogi wrote:000007460003500000010000000700600020000010000000000008650400000000000803000000106
I was going to attach an image to go with this puzzle but it was prevented. The error message says the board attachment quota has been reached.
I have not heard about this before.
Hi Yogi,
Puzzles are generally presented here in two forms: grid form and string form. The SER is also often given in order to provide a vague idea of difficulty:
- Code: Select all
+-------+-------+-------+
! 0 0 0 ! 0 0 7 ! 4 6 0 !
! 0 0 3 ! 5 0 0 ! 0 0 0 !
! 0 1 0 ! 0 0 0 ! 0 0 0 !
+-------+-------+-------+
! 7 0 0 ! 6 0 0 ! 0 2 0 !
! 0 0 0 ! 0 1 0 ! 0 0 0 !
! 0 0 0 ! 0 0 0 ! 0 0 8 !
+-------+-------+-------+
! 6 5 0 ! 4 0 0 ! 0 0 0 !
! 0 0 0 ! 0 0 0 ! 8 0 3 !
! 0 0 0 ! 0 0 0 ! 1 0 6 !
+-------+-------+-------+
000007460003500000010000000700600020000010000000000008650400000000000803000000106
SER = 6.7
A dot is generally used instead of a 0, because it makes it easier to see the givens (which is a must when they have an interesting pattern).
- Code: Select all
+-------+-------+-------+
! . . . ! . . 7 ! 4 6 . !
! . . 3 ! 5 . . ! . . . !
! . 1 . ! . . . ! . . . !
+-------+-------+-------+
! 7 . . ! 6 . . ! . 2 . !
! . . . ! . 1 . ! . . . !
! . . . ! . . . ! . . 8 !
+-------+-------+-------+
! 6 5 . ! 4 . . ! . . . !
! . . . ! . . . ! 8 . 3 !
! . . . ! . . . ! 1 . 6 !
+-------+-------+-------+
.....746...35......1.......7..6...2.....1............865.4...........8.3......1.6
SER = 6.7
This is much less costly, in terms of storage, than an image.
As to how to produce such graphics, it's easy to keep an empty grid and to fill manually a copy of it with the givens. Alternatively, you can download CSP-Rules and use the "pretty-print-sudoku-string" function. (Probably, other solvers can do the same). The command:
(pretty-print ".....746...35......1.......7..6...2.....1............865.4...........8.3......1.6")
will give you the grid:
- Code: Select all
+-------+-------+-------+
! . . . ! . . 7 ! 4 6 . !
! . . 3 ! 5 . . ! . . . !
! . 1 . ! . . . ! . . . !
+-------+-------+-------+
! 7 . . ! 6 . . ! . 2 . !
! . . . ! . 1 . ! . . . !
! . . . ! . . . ! . . 8 !
+-------+-------+-------+
! 6 5 . ! 4 . . ! . . . !
! . . . ! . . . ! 8 . 3 !
! . . . ! . . . ! 1 . 6 !
+-------+-------+-------+
On this forum, you have to surround this grid by "[code ]" and "[/code ]" tags (without the spaces) in order to see it properly formatted.
However, the most useful starting point for most players is the resolution state after Singles (which SudoRules will also automatically provide at the start of resolution);
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 2589 289 2589 ! 12389 2389 7 ! 4 6 1259 !
! 2489 246789 3 ! 5 24689 124689 ! 279 1789 1279 !
! 24589 1 2456789 ! 2389 234689 234689 ! 23579 35789 2579 !
+-------------------------+-------------------------+-------------------------+
! 7 3489 14589 ! 6 34589 34589 ! 359 2 1459 !
! 234589 234689 245689 ! 23789 1 234589 ! 35679 34579 4579 !
! 123459 23469 124569 ! 2379 234579 23459 ! 35679 134579 8 !
+-------------------------+-------------------------+-------------------------+
! 6 5 12789 ! 4 23789 12389 ! 279 79 279 !
! 1249 2479 12479 ! 1279 25679 12569 ! 8 4579 3 !
! 23489 234789 24789 ! 23789 235789 23589 ! 1 4579 6 !
+-------------------------+-------------------------+-------------------------+
Now, for the solution. Some cleaning with whips[1]:
- Code: Select all
whip[1]: r7n3{c6 .} ==> r9c6 ≠ 3, r9c4 ≠ 3, r9c5 ≠ 3
whip[1]: c9n4{r5 .} ==> r6c8 ≠ 4, r5c8 ≠ 4
whip[1]: r1n3{c5 .} ==> r3c6 ≠ 3, r3c4 ≠ 3, r3c5 ≠ 3
whip[1]: b9n5{r9c8 .} ==> r6c8 ≠ 5, r3c8 ≠ 5, r5c8 ≠ 5
whip[1]: b9n2{r7c9 .} ==> r7c6 ≠ 2, r7c3 ≠ 2, r7c5 ≠ 2
leads to the following resolution state:
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 2589 289 2589 ! 12389 2389 7 ! 4 6 1259 !
! 2489 246789 3 ! 5 24689 124689 ! 279 1789 1279 !
! 24589 1 2456789 ! 289 24689 24689 ! 23579 3789 2579 !
+-------------------------+-------------------------+-------------------------+
! 7 3489 14589 ! 6 34589 34589 ! 359 2 1459 !
! 234589 234689 245689 ! 23789 1 234589 ! 35679 379 4579 !
! 123459 23469 124569 ! 2379 234579 23459 ! 35679 1379 8 !
+-------------------------+-------------------------+-------------------------+
! 6 5 1789 ! 4 3789 1389 ! 279 79 279 !
! 1249 2479 12479 ! 1279 25679 12569 ! 8 4579 3 !
! 23489 234789 24789 ! 2789 25789 2589 ! 1 4579 6 !
+-------------------------+-------------------------+-------------------------+
from which three Subsets give the solution:
- Code: Select all
hidden-pairs-in-a-column: c8{n4 n5}{r8 r9} ==> r9c8 ≠ 9, r9c8 ≠ 7, r8c8 ≠ 9, r8c8 ≠ 7
whip[1]: b9n7{r7c9 .} ==> r7c3 ≠ 7, r7c5 ≠ 7
whip[1]: b9n9{r7c9 .} ==> r7c3 ≠ 9, r7c5 ≠ 9, r7c6 ≠ 9
hidden-pairs-in-a-block: b1{n6 n7}{r2c2 r3c3} ==> r3c3 ≠ 9, r3c3 ≠ 8, r3c3 ≠ 5, r3c3 ≠ 4, r3c3 ≠ 2, r2c2 ≠ 9, r2c2 ≠ 8, r2c2 ≠ 4, r2c2 ≠ 2
whip[1]: b1n4{r3c1 .} ==> r5c1 ≠ 4, r6c1 ≠ 4, r8c1 ≠ 4, r9c1 ≠ 4
finned-swordfish-in-columns: n1{c1 c8 c4}{r8 r6 r2} ==> r2c6 ≠ 1
stte
(This is basically the same solution as pjb and RSW.)