Yogi wrote:000007460003500000010000000700600020000010000000000008650400000000000803000000106
I was going to attach an image to go with this puzzle but it was prevented.  The error message says the board attachment quota has been reached.
I have not heard about this before.
Hi Yogi,
Puzzles are generally presented here in two forms: grid form and string form. The SER is also often given in order to provide a vague idea of difficulty:
- Code: Select all
      +-------+-------+-------+
     ! 0 0 0 ! 0 0 7 ! 4 6 0 ! 
     ! 0 0 3 ! 5 0 0 ! 0 0 0 ! 
     ! 0 1 0 ! 0 0 0 ! 0 0 0 ! 
     +-------+-------+-------+
     ! 7 0 0 ! 6 0 0 ! 0 2 0 ! 
     ! 0 0 0 ! 0 1 0 ! 0 0 0 ! 
     ! 0 0 0 ! 0 0 0 ! 0 0 8 ! 
     +-------+-------+-------+
     ! 6 5 0 ! 4 0 0 ! 0 0 0 ! 
     ! 0 0 0 ! 0 0 0 ! 8 0 3 ! 
     ! 0 0 0 ! 0 0 0 ! 1 0 6 ! 
     +-------+-------+-------+
000007460003500000010000000700600020000010000000000008650400000000000803000000106
SER = 6.7
A dot is generally used instead of a 0, because it makes it easier to see the givens (which is a must when they have an interesting pattern).
- Code: Select all
      +-------+-------+-------+
     ! . . . ! . . 7 ! 4 6 . ! 
     ! . . 3 ! 5 . . ! . . . ! 
     ! . 1 . ! . . . ! . . . ! 
     +-------+-------+-------+
     ! 7 . . ! 6 . . ! . 2 . ! 
     ! . . . ! . 1 . ! . . . ! 
     ! . . . ! . . . ! . . 8 ! 
     +-------+-------+-------+
     ! 6 5 . ! 4 . . ! . . . ! 
     ! . . . ! . . . ! 8 . 3 ! 
     ! . . . ! . . . ! 1 . 6 ! 
     +-------+-------+-------+
.....746...35......1.......7..6...2.....1............865.4...........8.3......1.6
SER = 6.7
This is much less costly, in terms of storage, than an image.
As to how to produce such graphics, it's easy to keep an empty grid and to fill manually a copy of it with the givens. Alternatively, you can download CSP-Rules and use the "pretty-print-sudoku-string" function. (Probably, other solvers can do the same). The command:
(pretty-print ".....746...35......1.......7..6...2.....1............865.4...........8.3......1.6") 
will give you the grid:
- Code: Select all
      +-------+-------+-------+
     ! . . . ! . . 7 ! 4 6 . ! 
     ! . . 3 ! 5 . . ! . . . ! 
     ! . 1 . ! . . . ! . . . ! 
     +-------+-------+-------+
     ! 7 . . ! 6 . . ! . 2 . ! 
     ! . . . ! . 1 . ! . . . ! 
     ! . . . ! . . . ! . . 8 ! 
     +-------+-------+-------+
     ! 6 5 . ! 4 . . ! . . . ! 
     ! . . . ! . . . ! 8 . 3 ! 
     ! . . . ! . . . ! 1 . 6 ! 
     +-------+-------+-------+
On  this forum, you have to surround this grid by "[code ]" and "[/code ]" tags (without the spaces) in order to see it properly formatted.
However, the most useful starting point for most players is the resolution state after Singles (which SudoRules will also automatically provide at the start of resolution); 
- Code: Select all
    +-------------------------+-------------------------+-------------------------+ 
   ! 2589    289     2589    ! 12389   2389    7       ! 4       6       1259    ! 
   ! 2489    246789  3       ! 5       24689   124689  ! 279     1789    1279    ! 
   ! 24589   1       2456789 ! 2389    234689  234689  ! 23579   35789   2579    ! 
   +-------------------------+-------------------------+-------------------------+ 
   ! 7       3489    14589   ! 6       34589   34589   ! 359     2       1459    ! 
   ! 234589  234689  245689  ! 23789   1       234589  ! 35679   34579   4579    ! 
   ! 123459  23469   124569  ! 2379    234579  23459   ! 35679   134579  8       ! 
   +-------------------------+-------------------------+-------------------------+ 
   ! 6       5       12789   ! 4       23789   12389   ! 279     79      279     ! 
   ! 1249    2479    12479   ! 1279    25679   12569   ! 8       4579    3       ! 
   ! 23489   234789  24789   ! 23789   235789  23589   ! 1       4579    6       ! 
   +-------------------------+-------------------------+-------------------------+
Now, for the solution. Some cleaning with whips[1]:
- Code: Select all
 whip[1]: r7n3{c6 .} ==> r9c6 ≠ 3, r9c4 ≠ 3, r9c5 ≠ 3
whip[1]: c9n4{r5 .} ==> r6c8 ≠ 4, r5c8 ≠ 4
whip[1]: r1n3{c5 .} ==> r3c6 ≠ 3, r3c4 ≠ 3, r3c5 ≠ 3
whip[1]: b9n5{r9c8 .} ==> r6c8 ≠ 5, r3c8 ≠ 5, r5c8 ≠ 5
whip[1]: b9n2{r7c9 .} ==> r7c6 ≠ 2, r7c3 ≠ 2, r7c5 ≠ 2
leads to the following resolution state:
- Code: Select all
    +-------------------------+-------------------------+-------------------------+ 
   ! 2589    289     2589    ! 12389   2389    7       ! 4       6       1259    ! 
   ! 2489    246789  3       ! 5       24689   124689  ! 279     1789    1279    ! 
   ! 24589   1       2456789 ! 289     24689   24689   ! 23579   3789    2579    ! 
   +-------------------------+-------------------------+-------------------------+ 
   ! 7       3489    14589   ! 6       34589   34589   ! 359     2       1459    ! 
   ! 234589  234689  245689  ! 23789   1       234589  ! 35679   379     4579    ! 
   ! 123459  23469   124569  ! 2379    234579  23459   ! 35679   1379    8       ! 
   +-------------------------+-------------------------+-------------------------+ 
   ! 6       5       1789    ! 4       3789    1389    ! 279     79      279     ! 
   ! 1249    2479    12479   ! 1279    25679   12569   ! 8       4579    3       ! 
   ! 23489   234789  24789   ! 2789    25789   2589    ! 1       4579    6       ! 
   +-------------------------+-------------------------+-------------------------+ 
from which three Subsets give the solution:
- Code: Select all
 hidden-pairs-in-a-column: c8{n4 n5}{r8 r9} ==> r9c8 ≠ 9, r9c8 ≠ 7, r8c8 ≠ 9, r8c8 ≠ 7
whip[1]: b9n7{r7c9 .} ==> r7c3 ≠ 7, r7c5 ≠ 7
whip[1]: b9n9{r7c9 .} ==> r7c3 ≠ 9, r7c5 ≠ 9, r7c6 ≠ 9
hidden-pairs-in-a-block: b1{n6 n7}{r2c2 r3c3} ==> r3c3 ≠ 9, r3c3 ≠ 8, r3c3 ≠ 5, r3c3 ≠ 4, r3c3 ≠ 2, r2c2 ≠ 9, r2c2 ≠ 8, r2c2 ≠ 4, r2c2 ≠ 2
whip[1]: b1n4{r3c1 .} ==> r5c1 ≠ 4, r6c1 ≠ 4, r8c1 ≠ 4, r9c1 ≠ 4
finned-swordfish-in-columns: n1{c1 c8 c4}{r8 r6 r2} ==> r2c6 ≠ 1
stte
(This is basically the same solution as pjb and RSW.)