.
A solution that avoids RT but uses instead self-contained impossible patterns, indeed two of the most frequent ones:
EL13c290 (2 different such relations) and EL14c1
- Code: Select all
hidden-pairs-in-a-row: r3{n7 n9}{c1 c3} ==> r3c3≠8, r3c3≠6, r3c3≠4, r3c3≠3, r3c1≠8, r3c1≠4, r3c1≠3
singles ==> r2c3=6, r2c2=5
+----------------------+----------------------+----------------------+
! 1 2 348# ! 348# 5 6 ! 7 348 9 !
! 348# 5 6 ! 7 348# 9 ! 1 348 2 !
! 79 348# 79 ! 2 1 348# ! 3456 3468 3568 !
+----------------------+----------------------+----------------------+
! 234789 6 345789 ! 3458 3478 13478 ! 239 379 137 !
! 23478 1348 3478 ! 3468 9 13478 ! 236 5 1367 !
! 379 13 3579 ! 356 2 137 ! 8 3679 4 !
+----------------------+----------------------+----------------------+
! 348# 9 1 ! 348# 34678 5 ! 346 2 3678 !
! 5 348# 2 ! 1 34678 3478#@ ! 3469 346789 3678 !
! 6 7 348# ! 9 348# 2 ! 345 1 358 !
+----------------------+----------------------+----------------------+
tridagon for digits 3, 4 and 8 in blocks:
b8, with cells (marked #): r8c6 (target cell, marked @), r9c5, r7c4
b7, with cells (marked #): r8c2, r9c3, r7c1
b2, with cells (marked #): r3c6, r2c5, r1c4
b1, with cells (marked #): r3c2, r2c1, r1c3
==> r8c6≠3,4,8
singles ==> r8c6=7, r4c5=7, r6c8=7, r7c9=7, r6c4=6, r4c4=5, r6c3=5, r6c1=9, r3c1=7, r3c3=9, r5c3=7
- Code: Select all
EL13c290s-OR2-relation for digits: 3, 4 and 8
in cells (marked #): (r4c3 r4c1 r4c6 r7c1 r7c4 r9c3 r9c5 r2c1 r2c5 r1c3 r1c4 r3c2 r3c6)
with 2 guardians (in cells marked @) : n2r4c1 n1r4c6
+----------------------+----------------------+----------------------+
! 1 2 348# ! 348# 5 6 ! 7 348 9 !
! 348# 5 6 ! 7 348# 9 ! 1 348 2 !
! 7 348# 9 ! 2 1 348# ! 3456 3468 3568 !
+----------------------+----------------------+----------------------+
! 2348#@ 6 348# ! 5 7 1348#@ ! 239 39 13 !
! 2348 1348 7 ! 348 9 1348 ! 236 5 136 !
! 9 13 5 ! 6 2 13 ! 8 7 4 !
+----------------------+----------------------+----------------------+
! 348# 9 1 ! 348# 3468 5 ! 346 2 7 !
! 5 348 2 ! 1 3468 7 ! 3469 34689 368 !
! 6 7 348# ! 9 348# 2 ! 345 1 358 !
+----------------------+----------------------+----------------------+
EL13c290s-OR2-whip[2]: OR2{{n2r4c1 | n1r4c6}} - r4c9{n1 .} ==> r4c1≠3- Code: Select all
EL13c290-OR2-relation for digits: 3, 4 and 8
in cells (marked #): (r3c2 r2c8 r2c5 r2c1 r1c8 r1c4 r1c3 r9c5 r9c3 r7c4 r7c1 r8c8 r8c2)
with 2 guardians (in cells marked @) : n6r8c8 n9r8c8
+-------------------------+-------------------------+-------------------------+
! 1 2 348# ! 348# 5 6 ! 7 348# 9 !
! 348# 5 6 ! 7 348# 9 ! 1 348# 2 !
! 7 348# 9 ! 2 1 348 ! 3456 3468 3568 !
+-------------------------+-------------------------+-------------------------+
! 248 6 348 ! 5 7 1348 ! 239 39 13 !
! 2348 1348 7 ! 348 9 1348 ! 236 5 136 !
! 9 13 5 ! 6 2 13 ! 8 7 4 !
+-------------------------+-------------------------+-------------------------+
! 348# 9 1 ! 348# 3468 5 ! 346 2 7 !
! 5 348# 2 ! 1 3468 7 ! 3469 34689#@ 368 !
! 6 7 348# ! 9 348# 2 ! 345 1 358 !
+-------------------------+-------------------------+-------------------------+
EL13c290-OR2-whip[1]: OR2{{n9r8c8 n6r8c8 | .}} ==> r8c8≠8whip[1]: b9n8{r9c9 .} ==> r3c9≠8
EL13c290-OR2-whip[1]: OR2{{n9r8c8 n6r8c8 | .}} ==> r8c8≠4whip[1]: b9n4{r9c7 .} ==> r3c7≠4
EL13c290-OR2-whip[1]: OR2{{n9r8c8 n6r8c8 | .}} ==> r8c8≠3- Code: Select all
EL14c1s-OR2-relation for digits: 3, 4 and 8
in cells (marked #): (r5c4 r5c1 r5c2 r8c2 r7c4 r7c1 r9c5 r9c3 r1c4 r1c3 r2c5 r2c1 r3c6 r3c2)
with 2 guardians (in cells marked @) : n2r5c1 n1r5c2
+----------------------+----------------------+----------------------+
! 1 2 348# ! 348# 5 6 ! 7 348 9 !
! 348# 5 6 ! 7 348# 9 ! 1 348 2 !
! 7 348# 9 ! 2 1 348# ! 356 3468 356 !
+----------------------+----------------------+----------------------+
! 248 6 348 ! 5 7 1348 ! 239 39 13 !
! 2348#@ 1348#@ 7 ! 348# 9 1348 ! 236 5 136 !
! 9 13 5 ! 6 2 13 ! 8 7 4 !
+----------------------+----------------------+----------------------+
! 348# 9 1 ! 348# 3468 5 ! 346 2 7 !
! 5 348# 2 ! 1 3468 7 ! 3469 69 368 !
! 6 7 348# ! 9 348# 2 ! 345 1 358 !
+----------------------+----------------------+----------------------+
EL14c1s-OR2-whip[2]: OR2{{n2r5c1 | n1r5c2}} - r6c2{n1 .} ==> r5c1≠3finned-x-wing-in-columns: n3{c1 c5}{r2 r7} ==> r7c4≠3
whip[1]: b8n3{r9c5 .} ==> r2c5≠3
EL13c290s-OR2-whip[3]: OR2{{n1r4c6 | n2r4c1}} - r4n4{c1 c3} - r4n8{c3 .} ==> r4c6≠3
EL13c290s-OR2-whip[3]: r4c9{n3 n1} - OR2{{n1r4c6 | n2r4c1}} - c7n2{r4 .} ==> r5c7≠3biv-chain[4]: b6n6{r5c9 r5c7} - b6n2{r5c7 r4c7} - b6n9{r4c7 r4c8} - r8c8{n9 n6} ==> r8c9≠6
whip[4]: c5n6{r8 r7} - r7n8{c5 c1} - r7n3{c1 c7} - r8c9{n3 .} ==> r8c5≠8
EL13c290s-OR2-whip[4]: r4c9{n3 n1} - OR2{{n1r4c6 | n2r4c1}} - r4n4{c1 c6} - r4n8{c6 .} ==> r4c3≠3whip[1]: r4n3{c9 .} ==> r5c9≠3
whip[1]: b4n3{r6c2 .} ==> r3c2≠3, r8c2≠3
naked-pairs-in-a-column: c2{r3 r8}{n4 n8} ==> r5c2≠8, r5c2≠4
EL14c1s-OR2-whip[3]: OR2{{n1r5c2 | n2r5c1}} - r5c7{n2 n6} - r5c9{n6 .} ==> r5c6≠1The end is easy:
- Code: Select all
t-whip[5]: r7n6{c5 c7} - r8c8{n6 n9} - r4c8{n9 n3} - r2n3{c8 c1} - r7n3{c1 .} ==> r7c5≠8, r7c5≠4
biv-chain[2]: r7n8{c1 c4} - c5n8{r9 r2} ==> r2c1≠8
finned-swordfish-in-columns: n8{c9 c2 c5}{r9 r8 r3} ==> r3c6≠8
whip[1]: c6n8{r5 .} ==> r5c4≠8
biv-chain[3]: c3n3{r9 r1} - r2c1{n3 n4} - c2n4{r3 r8} ==> r9c3≠4
biv-chain[4]: r9n4{c5 c7} - b9n5{r9c7 r9c9} - c9n8{r9 r8} - r8c2{n8 n4} ==> r8c5≠4
naked-pairs-in-a-block: b8{r7c5 r8c5}{n3 n6} ==> r9c5≠3
biv-chain[4]: c2n8{r3 r8} - r8c9{n8 n3} - r8c5{n3 n6} - c8n6{r8 r3} ==> r3c8≠8
singles ==> r3c2=8, r8c2=4, r8c9=8
finned-swordfish-in-rows: n3{r7 r8 r2}{c1 c5 c7} ==> r3c7≠3
biv-chain[3]: c3n3{r1 r9} - r9n8{c3 c5} - b2n8{r2c5 r1c4} ==> r1c4≠3
stte