I don't know if it's the "largest", but it"s certainly a MinLex puzzle.
JPF
+---+---+---+
|9..|8..|7..|
|.6.|.5.|.4.|
|..3|..2|..1|
+---+---+---+
|7..|.6.|..2|
|.4.|..3|8..|
|..1|9..|.5.|
+---+---+---+
|2..|..4|.9.|
|1.5|.7.|3..|
|.8.|1..|..6|
+---+---+---+
Jpf Wrote:
Just to confuse every one: here is the MaxLex representation of the "largest" found minlex [minimal] puzzle
+---+---+---+
|9..|8..|7..|
|6.5|.4.|.3.|
|.2.|..6|..1|
+---+---+---+
|7..|..2|.4.|
|.1.|.5.|8..|
|..3|9..|..6|
+---+---+---+
|4..|.1.|..9|
|.8.|3..|.2.|
|..6|..7|5..|
+---+---+---+
+---+---+---+
|98.| | |
| | | |
| | | |
+---+---+---+
+---+---+---+
|98.|7..|6..|
|5..|.9.|.4.|
|..3|..2|..1|
+---+---+---+
|7..|1..|..5|
|.2.|..4|.8.|
|..9|.6.|3..|
+---+---+---+
|4..|..3|7..|
|.6.|.5.|..2|
|..1|8..|.9.|
+---+---+---+
+---+---+---+
|..1|..2|..3|
|.4.|.5.|.6.|
|7..|8..|9..|
+---+---+---+
|..2|.6.|7..|
|.5.|9..|..1|
|8..|..3|.4.|
+---+---+---+
|..6|1..|.8.|
|.9.|..4|2..|
|3..|.7.|..5|
+---+---+---+ minus the clue in box 9
coloin wrote:
... its a strange puzzle ... Adding a single clue - it seem there are 6x9=54 ways to make the same isomorphic puzzle
Unavoidable Set #1
Set: 68.7..45.2.9..18.7.35.4..1291.4.5.3.4.3.876...6721...95...293.4..853..76.2.6.819.
Not Set: ..1.92..3.4.35..6.7..8.69....2.6.7.8.5.9...218....354..761...8.19...42..3.4.7...5
-------------------------------
|*6*'8'(1)|*7* 9 (2)|*4**5*(3)|
|'2'(4)*9*| 3 (5)*1*|*8*(6)*7*|
|(7)*3*'5'|(8)*4* 6 |(9)*1**2*|
-------------------------------
|*9**1*(2)|'4'(6)*5*|(7)*3* 8 |
|*4*(5)*3*|(9)*8*'7'|*6* 2 (1)|
|(8)*6**7*|*2*'1'(3)| 5 (4)*9*|
-------------------------------
|*5* 7 (6)|(1)*2**9*|'3'(8)*4*|
| 1 (9)*8*|*5**3*(4)|(2)*7*'6'|
|(3)*2* 4 |*6*(7)*8*|*1*'9'(5)| Key: (x) = clues, *x* = in both sets, 'x' = only member of this set.
-------------------------------
Set: 6..79.45...93.18.7.3..46.1291...5.384.3.8.62..672..5.957..29..41.853..7..246.81..
Not set: .81..2..324..5..6.7.58..9....246.7...5.9.7..18...13.4...61..38..9...42.63...7..95
Unavoidable Set #2
-------------------------------
|*6* 8 (1)|*7*'9'(2)|*4**5*(3)|
| 2 (4)*9*|'3'(5)*1*|*8*(6)*7*|
|(7)*3* 5 |(8)*4*'6'|(9)*1**2*|
-------------------------------
|*9**1*(2)| 4 (6)*5*|(7)*3*'8'|
|*4*(5)*3*|(9)*8* 7 |*6*'2'(1)|
|(8)*6**7*|*2* 1 (3)|'5'(4)*9*|
-------------------------------
|*5*'7'(6)|(1)*2**9*| 3 (8)*4*|
|'1'(9)*8*|*5**3*(4)|(2)*7* 6 |
|(3)*2*'4'|*6*(7)*8*|*1* 9 (5)| Key: (x) = clues, *x* = in both sets, 'x' = only member of this set.
-------------------------------
6.1..2..3.4..5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
9.1..2..3.4..5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.43.5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.49.5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.4..5..6.73.8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.4..5..6.76.8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
coloin wrote:
... its a strange puzzle ... Adding a single clue - it seem there are 6x9=54 ways to make the same isomorphic puzzle
+---+---+---+
|..1|..2|..3|
|.4.|.5.|...|
|7..|8..|9..|
+---+---+---+
|..2|.6.|7..|
|.5.|9..|..1|
|8..|..3|.4.|
+---+---+---+
|...|1..|.8.|
|.9.|..4|2..|
|3..|.7.|6.5|
+---+---+---+ #2 minimal
+---+---+---+
|.61|...|..3|
|.4.|.5.|.6.|
|7..|8..|9..|
+---+---+---+
|..2|.6.|7..|
|...|9..|..1|
|8..|..3|.4.|
+---+---+---+
|..6|1..|.8.|
|.9.|..4|2..|
|3..|.7.|..5|
+---+---+---+ #3 minimal
"Minimal Grid = Minlex grid common to MaxMin, Alt1 & Alt2 grids"
Minimal Grid: 123456789457189236968372514291738465374265198685941327546813972732694851819527643
Max = with 6 at c0xr0
Max Grid: 681792453249351867735846912912465738453987621867213549576129384198534276324678195
Alt1 = with 5 at c0xr0
Alt1 Grid: 561492873948357162723816954432561798657948321819723546276135489195684237384279615
Alt2 = with 9 at c0xr0
Alt2 Grid: 981642573243759168765831924132468759654927831879513642426195387597384216318276495
Grid Seq Transposition Digits 123456789 ==> Rows 123456789 ==> Columns 123456789 ==>
Minimal Grid 1 No 123456789 123456789 123456789 (identity)
Minimal Grid 2 No 745891623 312645897 231645897
Minimal Grid 3 No 689237145 231564978 312564978
Minimal Grid 4 No 219654873 465132798 132897645
Minimal Grid 5 No 865732419 654321879 213978564
Minimal Grid 6 No 473198265 546213987 321789456
Minimal Grid 7 No 527819346 978546231 456123987
Minimal Grid 8 No 946273581 897654312 564312879
Minimal Grid 9 No 381465927 789465123 645231798
Minimal Grid 10 No 518723964 564987213 465879312
Minimal Grid 11 No 364189572 645879321 546798231
Minimal Grid 12 No 972645318 456798132 654987123
Minimal Grid 13 No 837564291 798123465 789321654
Minimal Grid 14 No 256918437 879312654 897132546
Minimal Grid 15 No 491372856 987231546 978213465
Minimal Grid 16 No 798546132 132789456 798546132
Minimal Grid 17 No 154327698 321897645 879465213
Minimal Grid 18 No 632981754 213978564 987654321
Minimal Grid 19 Yes 362785914 897312645 123546987
Minimal Grid 20 Yes 514629378 789231456 231654879
Minimal Grid 21 Yes 978143562 978123564 312465798
Minimal Grid 22 Yes 941875326 321879654 132879654
Minimal Grid 23 Yes 526413987 213798465 213798465
Minimal Grid 24 Yes 387269541 132987546 321987546
Minimal Grid 25 Yes 634587192 456213789 465312897
Minimal Grid 26 Yes 792341658 564132978 546123789
Minimal Grid 27 Yes 158926734 645321897 654231978
Minimal Grid 28 Yes 496578231 231465798 456978231
Minimal Grid 29 Yes 831962457 123546987 564897312
Minimal Grid 30 Yes 257314896 312654879 645789123
Minimal Grid 31 Yes 129857643 546978132 798213564
Minimal Grid 32 Yes 685431729 465789213 879132456
Minimal Grid 33 Yes 743296185 654897321 987321645
Minimal Grid 34 Yes 213758469 987564123 789645321
Minimal Grid 35 Yes 475692813 798456231 897564213
Minimal Grid 36 Yes 869134275 879645312 978456132
Max 1 No 469813275 789312465 123465897
Max 2 No 813275469 978231654 231546978
Max 3 No 275469813 897123546 312654789
Max 4 No 643729185 321798456 132978546
Max 5 No 729185643 213987645 213789654
Max 6 No 185643729 132879564 321897465
Max 7 No 896457231 546132897 465123798
Max 8 No 457231896 465321789 546231879
Max 9 No 231896457 654213978 654312987
Max 10 No 734658192 123564879 456987312
Max 11 No 658192734 312456798 564798123
Max 12 No 192734658 231645987 645879231
Max 13 No 326541987 564897132 789213456
Max 14 No 541987326 456789321 897321564
Max 15 No 987326541 645978213 978132645
Max 16 No 914562378 879546123 798564321
Max 17 No 562378914 798465312 879645132
Max 18 No 378914562 987654231 987456213
Max 19 Yes 927581346 123645798 123654978
Max 20 Yes 346927581 312564987 231465789
Max 21 Yes 581346927 231456879 312546897
Max 22 Yes 318572964 654132789 132789465
Max 23 Yes 964318572 546321978 213897546
Max 24 Yes 572964318 465213897 321978654
Max 25 Yes 789623145 798654123 465231987
Max 26 Yes 145789623 987546312 546312798
Max 27 Yes 623145789 879465231 654123879
Max 28 Yes 873419265 645789132 456879123
Max 29 Yes 265873419 564978321 564987231
Max 30 Yes 419265873 456897213 645798312
Max 31 Yes 754132698 978312546 789132564
Max 32 Yes 698754132 897231465 897213645
Max 33 Yes 132698754 789123654 978321456
Max 34 Yes 856291437 321987564 798645213
Max 35 Yes 437856291 213879456 879456321
Max 36 Yes 291437856 132798645 987564132
Alt1 1 No 632154798 456978132 123546789
Alt1 2 No 154798632 645897321 231654897
Alt1 3 No 798632154 564789213 312465978
Alt1 4 No 491256837 987465123 132897654
Alt1 5 No 256837491 879654312 213978465
Alt1 6 No 837491256 798546231 321789546
Alt1 7 No 364972518 321879645 465312879
Alt1 8 No 972518364 213798564 546123987
Alt1 9 No 518364972 132987456 654231798
Alt1 10 No 946381527 897312654 456798231
Alt1 11 No 381527946 789231546 564879312
Alt1 12 No 527946381 978123465 645987123
Alt1 13 No 473865219 123456987 789321645
Alt1 14 No 865219473 312645879 897132456
Alt1 15 No 219473865 231564798 978213564
Alt1 16 No 689745123 465132978 798456132
Alt1 17 No 745123689 654321897 879564213
Alt1 18 No 123689745 546213789 987645321
Alt1 19 Yes 792158634 456978132 123546789
Alt1 20 Yes 634792158 645897321 231654897
Alt1 21 Yes 158634792 564789213 312465978
Alt1 22 Yes 831257496 987465123 132897654
Alt1 23 Yes 496831257 879654312 213978465
Alt1 24 Yes 257496831 798546231 321789546
Alt1 25 Yes 514978362 321879645 465312879
Alt1 26 Yes 362514978 213798564 546123987
Alt1 27 Yes 978362514 132987456 654231798
Alt1 28 Yes 526387941 897312654 456798231
Alt1 29 Yes 941526387 789231546 564879312
Alt1 30 Yes 387941526 978123465 645987123
Alt1 31 Yes 213869475 123456987 789321645
Alt1 32 Yes 475213869 312645879 897132456
Alt1 33 Yes 869475213 231564798 978213564
Alt1 34 Yes 129743685 465132978 798456132
Alt1 35 Yes 685129743 654321897 879564213
Alt1 36 Yes 743685129 546213789 987645321
Alt2 1 No 347586921 123645798 123654978
Alt2 2 No 586921347 312564987 231465789
Alt2 3 No 921347586 231456879 312546897
Alt2 4 No 968574312 654132789 132789465
Alt2 5 No 574312968 546321978 213897546
Alt2 6 No 312968574 465213897 321978654
Alt2 7 No 149625783 798654123 465231987
Alt2 8 No 625783149 987546312 546312798
Alt2 9 No 783149625 879465231 654123879
Alt2 10 No 263415879 645789132 456879123
Alt2 11 No 415879263 564978321 564987231
Alt2 12 No 879263415 456897213 645798312
Alt2 13 No 694138752 978312546 789132564
Alt2 14 No 138752694 897231465 897213645
Alt2 15 No 752694138 789123654 978321456
Alt2 16 No 436297851 321987564 798645213
Alt2 17 No 297851436 213879456 879456321
Alt2 18 No 851436297 132798645 987564132
Alt2 19 Yes 279815463 789312465 123465897
Alt2 20 Yes 463279815 978231654 231546978
Alt2 21 Yes 815463279 897123546 312654789
Alt2 22 Yes 183725649 321798456 132978546
Alt2 23 Yes 649183725 213987645 213789654
Alt2 24 Yes 725649183 132879564 321897465
Alt2 25 Yes 236451897 546132897 465123798
Alt2 26 Yes 897236451 465321789 546231879
Alt2 27 Yes 451897236 654213978 654312987
Alt2 28 Yes 194652738 123564879 456987312
Alt2 29 Yes 738194652 312456798 564798123
Alt2 30 Yes 652738194 231645987 645879231
Alt2 31 Yes 986547321 564897132 789213456
Alt2 32 Yes 321986547 456789321 897321564
Alt2 33 Yes 547321986 645978213 978132645
Alt2 34 Yes 374568912 879546123 798564321
Alt2 35 Yes 912374568 798465312 879645132
Alt2 36 Yes 568912374 987654231 987456213
coloin wrote:
As the subpuzzle stands each of the unfilled cells options can give a valid puzzle - so that is 108 puzzles, 54 of one solution and 27 each of the 2 others...
For the MinMax grid, option counts in boxes 1 - 9 are: 3,3,6,6,3,3,3,6,3 - 36
For the Alt1 grid, option counts in boxes 1 - 9 are: 6,3,3,3,6,3,3,3,6 - 36
For the Alt2 grid, option counts in boxes 1 - 9 are: 3,6,3,3,3,6,6,3,3 - 36
6.1..2..3.4..5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
9.1..2..3.4..5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.43.5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.49.5..6.7..8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.4..5..6.73.8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
..1..2..3.4..5..6.76.8..9....2.6.7...5.9....18....3.4...61...8..9...42..3...7...5
For the MinMax grid, option counts in boxes 1 - 9 are: 6,6,6,6,6,6,6,6,6 - 54
For the Grid1, option counts in boxes 1 - 9 are: 3,3,3,3,3,3,3,3,3 - 27
For the Grid2, option counts in boxes 1 - 9 are: 3,3,3,3,3,3,3,3,3 - 27
swb01 wrote:For each box, the puzzles for 6 options are not minimal,