.
As no solution has been found, here is mine, using pattern EL13c30 (details for the pattern here:
http://forum.enjoysudoku.com/how-to-deal-with-large-numbers-of-patterns-t40889.html).
hidden-pairs-in-a-row: r6{n1 n3}{c5 c6} ==> r6c6≠9, r6c6≠4, r6c6≠2, r6c5≠9, r6c5≠6, r6c5≠4, r6c5≠2
hidden-pairs-in-a-column: c2{n5 n6}{r2 r3} ==> r3c2≠9, r3c2≠4, r3c2≠2, r2c2≠9, r2c2≠4, r2c2≠2
- Code: Select all
+----------------------+----------------------+----------------------+
! 1 249 3 ! 249 5 6 ! 24789 278 2489 !
! 249 56 7 ! 1 8 249 ! 23459 2356 24569 !
! 8 56 249 ! 3 249 7 ! 12459 256 124569 !
+----------------------+----------------------+----------------------+
! 249 3 6 ! 5 249 8 ! 249 1 7 !
! 5 1 249 ! 7 2469 249 ! 2489 268 3 !
! 7 249 8 ! 2469 13 13 ! 2459 256 24569 !
+----------------------+----------------------+----------------------+
! 234 247 124 ! 8 12347 5 ! 6 9 12 !
! 6 24789 5 ! 249 123479 12349 ! 12378 2378 128 !
! 239 2789 129 ! 269 123679 1239 ! 123578 4 1258 !
+----------------------+----------------------+----------------------+
tridagon for digits 2, 4 and 9 in blocks:
b5, with cells: r6c4 (target cell), r5c6, r4c5
b4, with cells: r6c2, r5c3, r4c1
b2, with cells: r1c4, r2c6, r3c5
b1, with cells: r1c2, r2c1, r3c3
==> r6c4≠2,4,9
single ==> r6c4=6, r9c5=6, r5c8=6, r5c7=8
naked-pairs-in-a-column: c8{r3 r6}{n2 n5} ==> r8c8≠2, r2c8≠5, r2c8≠2, r1c8≠2
naked-single ==> r2c8=3
naked-triplets-in-a-column: c5{r3 r4 r5}{n2 n4 n9} ==> r8c5≠9, r8c5≠4, r8c5≠2, r7c5≠4, r7c5≠2
whip[1]: b8n4{r8c6 .} ==> r8c2≠4
hidden-triplets-in-a-row: r9{n5 n7 n8}{c9 c7 c2} ==> r9c9≠2, r9c9≠1, r9c7≠3, r9c7≠2, r9c7≠1, r9c2≠9, r9c2≠2
singles ==> r8c7=3, r3c7=1
whip[1]: b9n2{r8c9 .} ==> r1c9≠2, r2c9≠2, r3c9≠2, r6c9≠2
hidden-pairs-in-a-column: c9{n1 n2}{r7 r8} ==> r8c9≠8
- Code: Select all
OR2-El13c30 relation for digits: 2, 4 and 9
in cells: (r5c5 r5c3 r4c7 r4c5 r4c1 r3c5 r3c3 r2c7 r2c6 r2c1 r1c7 r1c4 r1c2)
with 2 guardians : n5r2c7 n7r1c7
+----------------------+----------------------+----------------------+
! 1 249# 3 ! 249# 5 6 ! 2479#@ 78 489 !
! 249# 56 7 ! 1 8 249# ! 2459#@ 3 4569 !
! 8 56 249# ! 3 249# 7 ! 1 25 4569 !
+----------------------+----------------------+----------------------+
! 249# 3 6 ! 5 249# 8 ! 249# 1 7 !
! 5 1 249# ! 7 249# 249 ! 8 6 3 !
! 7 249 8 ! 6 13 13 ! 2459 25 459 !
+----------------------+----------------------+----------------------+
! 234 247 124 ! 8 137 5 ! 6 9 12 !
! 6 2789 5 ! 249 17 1249 ! 3 78 12 !
! 239 78 129 ! 29 6 1239 ! 57 4 58 !
+----------------------+----------------------+----------------------+
El13c30-OR2-whip[2]: OR2{{n7r1c7 | n5r2c7}} - r3c8{n5 .} ==> r1c7≠2
El13c30-OR2-whip[2]: OR2{{n5r2c7 | n7r1c7}} - r9c7{n7 .} ==> r6c7≠5t-whip[3]: r1n2{c2 c4} - r9c4{n2 n9} - r8n9{c6 .} ==> r8c2≠2, r1c2≠9
z-chain[4]: r1n2{c2 c4} - r9n2{c4 c6} - b8n3{r9c6 r7c5} - r7n7{c5 .} ==> r7c2≠2
finned-x-wing-in-columns: n2{c8 c2}{r6 r3} ==> r3c3≠2
t-whip[4]: r9c4{n9 n2} - r8n2{c6 c9} - c9n1{r8 r7} - c3n1{r7 .} ==> r9c3≠9
finned-x-wing-in-columns: n9{c3 c5}{r3 r5} ==> r5c6≠9
whip[1]: b5n9{r5c5 .} ==> r3c5≠9
biv-chain[3]: r3c5{n2 n4} - r3c3{n4 n9} - r5n9{c3 c5} ==> r5c5≠2
finned-x-wing-in-columns: n2{c5 c8}{r3 r4} ==> r4c7≠2
whip[1]: b6n2{r6c8 .} ==> r6c2≠2
hidden-single-in-a-column ==> r1c2=2
whip[1]: c4n2{r9 .} ==> r8c6≠2, r9c6≠2
biv-chain[3]: b1n4{r2c1 r3c3} - r3c5{n4 n2} - b3n2{r3c8 r2c7} ==> r2c7≠4
biv-chain[3]: b1n4{r2c1 r3c3} - r3c5{n4 n2} - r4n2{c5 c1} ==> r4c1≠4
biv-chain[3]: b1n4{r2c1 r3c3} - r3n9{c3 c9} - c9n6{r3 r2} ==> r2c9≠4
z-chain[3]: b4n4{r6c2 r5c3} - r3n4{c3 c5} - r4n4{c5 .} ==> r6c9≠4
whip[1]: c9n4{r3 .} ==> r1c7≠4
El13c30-OR2-whip[3]: OR2{{n7r1c7 | n5r2c7}} - r2c2{n5 n6} - r2c9{n6 .} ==> r1c7≠9stte