#156 in 63,137 or 158,276 T&E(3) min-expands

Post puzzles for others to solve here.

#156 in 63,137 or 158,276 T&E(3) min-expands

Postby denis_berthier » Tue Feb 21, 2023 9:37 am

.
Yet another impossible pattern (in the 630 list)

Code: Select all
+-------+-------+-------+
! 1 . 3 ! . 5 6 ! . . . !
! . . 7 ! 1 8 . ! . . . !
! 8 . . ! 3 . 7 ! . . . !
+-------+-------+-------+
! . 3 6 ! 5 . 8 ! . 1 7 !
! 5 1 . ! 7 . . ! . . 3 !
! 7 . 8 ! . . . ! . . . !
+-------+-------+-------+
! . . . ! 8 . 5 ! 6 9 . !
! 6 . 5 ! . . . ! . . . !
! . . . ! . . . ! . 4 . !
+-------+-------+-------+
1.3.56.....718....8..3.7....365.8.1751.7....37.8.........8.569.6.5.............4.;67;708
SER = 11.1


Code: Select all
Resolution state after Singles (and whips[1]):
  +----------------------+----------------------+----------------------+
  ! 1      249    3      ! 249    5      6      ! 24789  278    2489   !
  ! 249    24569  7      ! 1      8      249    ! 23459  2356   24569  !
  ! 8      24569  249    ! 3      249    7      ! 12459  256    124569 !
  +----------------------+----------------------+----------------------+
  ! 249    3      6      ! 5      249    8      ! 249    1      7      !
  ! 5      1      249    ! 7      2469   249    ! 2489   268    3      !
  ! 7      249    8      ! 2469   123469 12349  ! 2459   256    24569  !
  +----------------------+----------------------+----------------------+
  ! 234    247    124    ! 8      12347  5      ! 6      9      12     !
  ! 6      24789  5      ! 249    123479 12349  ! 12378  2378   128    !
  ! 239    2789   129    ! 269    123679 1239   ! 123578 4      1258   !
  +----------------------+----------------------+----------------------+
204 candidates, 1417 csp-links and 1417 links. Density = 6.84%
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #156 in 63,137 or 158,276 T&E(3) min-expands

Postby denis_berthier » Thu Feb 23, 2023 4:45 am

.
As no solution has been found, here is mine, using pattern EL13c30 (details for the pattern here: http://forum.enjoysudoku.com/how-to-deal-with-large-numbers-of-patterns-t40889.html).

hidden-pairs-in-a-row: r6{n1 n3}{c5 c6} ==> r6c6≠9, r6c6≠4, r6c6≠2, r6c5≠9, r6c5≠6, r6c5≠4, r6c5≠2
hidden-pairs-in-a-column: c2{n5 n6}{r2 r3} ==> r3c2≠9, r3c2≠4, r3c2≠2, r2c2≠9, r2c2≠4, r2c2≠2

Code: Select all
  +----------------------+----------------------+----------------------+
  ! 1      249    3      ! 249    5      6      ! 24789  278    2489   !
  ! 249    56     7      ! 1      8      249    ! 23459  2356   24569  !
  ! 8      56     249    ! 3      249    7      ! 12459  256    124569 !
  +----------------------+----------------------+----------------------+
  ! 249    3      6      ! 5      249    8      ! 249    1      7      !
  ! 5      1      249    ! 7      2469   249    ! 2489   268    3      !
  ! 7      249    8      ! 2469   13     13     ! 2459   256    24569  !
  +----------------------+----------------------+----------------------+
  ! 234    247    124    ! 8      12347  5      ! 6      9      12     !
  ! 6      24789  5      ! 249    123479 12349  ! 12378  2378   128    !
  ! 239    2789   129    ! 269    123679 1239   ! 123578 4      1258   !
  +----------------------+----------------------+----------------------+

tridagon for digits 2, 4 and 9 in blocks:
       b5, with cells: r6c4 (target cell), r5c6, r4c5
       b4, with cells: r6c2, r5c3, r4c1
       b2, with cells: r1c4, r2c6, r3c5
       b1, with cells: r1c2, r2c1, r3c3
==> r6c4≠2,4,9

single ==> r6c4=6, r9c5=6, r5c8=6, r5c7=8
naked-pairs-in-a-column: c8{r3 r6}{n2 n5} ==> r8c8≠2, r2c8≠5, r2c8≠2, r1c8≠2
naked-single ==> r2c8=3
naked-triplets-in-a-column: c5{r3 r4 r5}{n2 n4 n9} ==> r8c5≠9, r8c5≠4, r8c5≠2, r7c5≠4, r7c5≠2
whip[1]: b8n4{r8c6 .} ==> r8c2≠4
hidden-triplets-in-a-row: r9{n5 n7 n8}{c9 c7 c2} ==> r9c9≠2, r9c9≠1, r9c7≠3, r9c7≠2, r9c7≠1, r9c2≠9, r9c2≠2
singles ==> r8c7=3, r3c7=1
whip[1]: b9n2{r8c9 .} ==> r1c9≠2, r2c9≠2, r3c9≠2, r6c9≠2
hidden-pairs-in-a-column: c9{n1 n2}{r7 r8} ==> r8c9≠8

Code: Select all
OR2-El13c30 relation for digits: 2, 4 and 9
  in cells: (r5c5 r5c3 r4c7 r4c5 r4c1 r3c5 r3c3 r2c7 r2c6 r2c1 r1c7 r1c4 r1c2)
  with 2 guardians : n5r2c7 n7r1c7
  +----------------------+----------------------+----------------------+
  ! 1      249#   3      ! 249#   5      6      ! 2479#@ 78     489    !
  ! 249#   56     7      ! 1      8      249#   ! 2459#@ 3      4569   !
  ! 8      56     249#   ! 3      249#   7      ! 1      25     4569   !
  +----------------------+----------------------+----------------------+
  ! 249#   3      6      ! 5      249#   8      ! 249#   1      7      !
  ! 5      1      249#   ! 7      249#   249    ! 8      6      3      !
  ! 7      249    8      ! 6      13     13     ! 2459   25     459    !
  +----------------------+----------------------+----------------------+
  ! 234    247    124    ! 8      137    5      ! 6      9      12     !
  ! 6      2789   5      ! 249    17     1249   ! 3      78     12     !
  ! 239    78     129    ! 29     6      1239   ! 57     4      58     !
  +----------------------+----------------------+----------------------+


El13c30-OR2-whip[2]: OR2{{n7r1c7 | n5r2c7}} - r3c8{n5 .} ==> r1c7≠2
El13c30-OR2-whip[2]: OR2{{n5r2c7 | n7r1c7}} - r9c7{n7 .} ==> r6c7≠5

t-whip[3]: r1n2{c2 c4} - r9c4{n2 n9} - r8n9{c6 .} ==> r8c2≠2, r1c2≠9
z-chain[4]: r1n2{c2 c4} - r9n2{c4 c6} - b8n3{r9c6 r7c5} - r7n7{c5 .} ==> r7c2≠2
finned-x-wing-in-columns: n2{c8 c2}{r6 r3} ==> r3c3≠2
t-whip[4]: r9c4{n9 n2} - r8n2{c6 c9} - c9n1{r8 r7} - c3n1{r7 .} ==> r9c3≠9
finned-x-wing-in-columns: n9{c3 c5}{r3 r5} ==> r5c6≠9
whip[1]: b5n9{r5c5 .} ==> r3c5≠9
biv-chain[3]: r3c5{n2 n4} - r3c3{n4 n9} - r5n9{c3 c5} ==> r5c5≠2
finned-x-wing-in-columns: n2{c5 c8}{r3 r4} ==> r4c7≠2
whip[1]: b6n2{r6c8 .} ==> r6c2≠2
hidden-single-in-a-column ==> r1c2=2
whip[1]: c4n2{r9 .} ==> r8c6≠2, r9c6≠2
biv-chain[3]: b1n4{r2c1 r3c3} - r3c5{n4 n2} - b3n2{r3c8 r2c7} ==> r2c7≠4
biv-chain[3]: b1n4{r2c1 r3c3} - r3c5{n4 n2} - r4n2{c5 c1} ==> r4c1≠4
biv-chain[3]: b1n4{r2c1 r3c3} - r3n9{c3 c9} - c9n6{r3 r2} ==> r2c9≠4
z-chain[3]: b4n4{r6c2 r5c3} - r3n4{c3 c5} - r4n4{c5 .} ==> r6c9≠4
whip[1]: c9n4{r3 .} ==> r1c7≠4
El13c30-OR2-whip[3]: OR2{{n7r1c7 | n5r2c7}} - r2c2{n5 n6} - r2c9{n6 .} ==> r1c7≠9
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: #156 in 63,137 or 158,276 T&E(3) min-expands

Postby Leren » Tue Feb 28, 2023 5:25 am

Code: Select all
*-------------------------------------------------------------*
| 1   A249    3   |B249    5       6     | 24789  278  2489   |
|*249  56     7   | 1      8      *249   | 23459  2356 24569  |
| 8    56    *249 | 3     *249     7     | 12459  256  124569 |
|-----------------+----------------------+--------------------|
|*249  3      6   | 5     *249     8     | 249    1    7      |
| 5    1     *249 | 7      2469   *249   | 2489   268  3      |
| 7   C249    8   |D6-249  13      13    | 2459   256  24569  |
|-----------------+----------------------+--------------------|
| 234  247    124 | 8      12347   5     | 6      9    12     |
| 6    24789  5   | 249    123479  12349 | 12378  2378 128    |
| 239  2789   129 | 269    123679  1239  | 123578 4    1258   |
*-------------------------------------------------------------*

Trigadon (249) with 1 Guardian => - 249 = 1 r6c4; Rectangle cells ABCD => Remote Triple Cells ABC.

Code: Select all
*------------------------------------------------*
| 1   A249  3   |B249 5   6    | 7-249  78  489  |
| 249  56   7   | 1   8   249  | 2459   3   4569 |
| 8    56   249 | 3   249 7    | 1      25  4569 |
|---------------+--------------+-----------------|
| 249  3    6   | 5   249 8    |*249    1   7    |
| 5    1    249 | 7   249 249  | 8      6   3    |
| 7   C249  8   | 6   13  13   |*2459  *25 *459  |
|---------------+--------------+-----------------|
| 234  247  124 | 8   137 5    | 6      9   12   |
| 6    2789 5   | 249 17  1249 | 3      78  12   |
| 239  78   129 | 29  6   1239 | 57     4   58   |
*------------------------------------------------*

Basics get you to here. ER (249) Box 6 and RT cells ABC => - 249 = 7 r1c7; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: #156 in 63,137 or 158,276 T&E(3) min-expands

Postby ghfick » Tue Feb 28, 2023 2:02 pm

Hi Leren,
Your solution path is very creative and interesting. The second step uses the new advance detailed in the Remote Triple thread with the venerable Empty Rectangle.
I am not sure of the notation ER(249) but I think one needs that box 6 contains the same ER type "L" for each of the digits {2,4,9}.
Gordon
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick


Return to Puzzles