This one may be solved with help of RT:
- Code: Select all
+----------------------+--------------------------+-------------------------+
| 1 249* 3 | 249* 5 6 | 24789 278 2489 |
| 249* 56 7 | 1 8 249* | 23459 2356 24569 |
| 8 56 249* | 3 249* 7 | 1 256 24569 |
+----------------------+--------------------------+-------------------------+
| 249* 3 6 | 5 249* 8 | 249 1 7 |
| 5 1 249* | 7 2469 249* | 2489 268 3 |
| 7 249* 8 | 249+6* 13 13 | 2459 256 24569 |
+----------------------+--------------------------+-------------------------+
| 234 247 124 | 8 12347 12345 | 6 9 125 |
| 6 24789 5 | 249 123479 12349 | 2378 2378 128 |
| 239 2789 129 | 269 123679 12359 | 23578 4 1258 |
+----------------------+--------------------------+-------------------------+
TH(249)b1245 having a single guardian => +6 r6c4; lcls, 5 placements
Note RT(249) at r1c24, r6c2
- Code: Select all
+----------------------+----------------------+----------------------+
| 1 249* 3 | 249* 5 6 | 7-249 78 2489 |
| 249 56 7 | 1 8 249 | 2459 3 24569 |
| 8 56 249 | 3 249 7 | 1 25 24569 |
+----------------------+----------------------+----------------------+
| 249 3 6 | 5 249 8 | x249* 1 7 |
| 5 1 249 | 7 249 249 | 8 6 3 |
| 7 x249* 8 | 6 13 13 | X2459 X25 X2459 |
+----------------------+----------------------+----------------------+
| 234 247 124 | 8 137 12345 | 6 9 125 |
| 6 24789 5 | 249 137 12349 | 237 78 128 |
| 239 2789 129 | 29 6 12359 | 2357 4 1258 |
+----------------------+----------------------+----------------------+
ER(2,4,9) at b6 => xr6c2 is also true at r4c7 => RT(249) r1c24, r4c6 => -249 r1c7; lcls, 8 placements
- Code: Select all
+--------------------+-------------------+----------------------+
| 1 249 3 | 49 5 6 | 7 8 249 |
| 249 56 7 | 1 8 249 | 2459 3 24569 |
| 8 56 249 | 3 249 7 | 1 25 24569 |
+--------------------+-------------------+----------------------+
| 249 3 6 | 5 249 8 | 249 1 7 |
| 5 1 249 | 7 249 249 | 8 6 3 |
| 7 249 8 | 6 13 13 | 2459 25 2459 |
+--------------------+-------------------+----------------------+
| 234 24 124 | 8 7 135 | 6 9 15 |
| 6 8 5 | 49 13 49 | 23 7 12 |
| 39 7 19 | 2 6 135 | 35 4 8 |
+--------------------+-------------------+----------------------+
The puzzle is then solved with five simple AICs
3. (2)r1c2 = r1c9 - r3c8 = r6c8 => -2 r6c2
4. (5)r9c6 = (5-3)r7c6 = r7c1 - (3=91)r9c13 => -1 r9c6; 3 placements
5. (2)r5c6 = r2c6 - r2c1 = r4c1 => -2 r5c3; 2 placements
6. (9)r3c3 = r5c3 - r5c56 = r4c5 => -9 r3c5
7. (9=2)r3c3 - r1c2 = (2-4)r1c9 = (4)r3c9 => -9 r3c9; ste