It is quite difficult to find a puzzle that:
- cannot be solved only with whips + Tridagon ORk-chains, all of length ≤ 8,
- can be solved if one adds eleven's pattern #97 (ex #37) in 15 cells and associated El97 ORk-chains,
- doesn't rely on the application of the elementary tridaagon elimination rule (only 1 guardian).
This is an example (unfortunately, the number of tridagon guardians quickly falls to 2). I wonder if RT can still simplify the solution.
- Code: Select all
+-------+-------+-------+
! . . . ! . 5 6 ! . . . !
! . 5 7 ! 1 8 . ! . 3 . !
! 6 8 . ! 7 . 3 ! 1 5 . !
+-------+-------+-------+
! . 1 6 ! . 7 5 ! . . . !
! . . 8 ! . . . ! . . 1 !
! . 3 . ! 8 . 1 ! . . . !
+-------+-------+-------+
! . . . ! . . . ! 9 . . !
! . 7 . ! . . . ! 4 6 . !
! . . . ! 5 . 7 ! . 1 8 !
+-------+-------+-------+
....56....5718..3.68.7.315..16.75.....8.....1.3.8.1.........9...7....46....5.7.18;3275;274896
SER = 10.4
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 12349 249 12349 ! 249 5 6 ! 278 24789 2479 !
! 249 5 7 ! 1 8 249 ! 26 3 2469 !
! 6 8 249 ! 7 249 3 ! 1 5 249 !
+----------------------+----------------------+----------------------+
! 249 1 6 ! 2349 7 5 ! 238 2489 2349 !
! 24579 249 8 ! 23469 23469 249 ! 23567 2479 1 !
! 24579 3 2459 ! 8 2469 1 ! 2567 2479 24679 !
+----------------------+----------------------+----------------------+
! 123458 246 12345 ! 2346 12346 248 ! 9 27 2357 !
! 123589 7 12359 ! 239 1239 289 ! 4 6 235 !
! 2349 2469 2349 ! 5 23469 7 ! 23 1 8 !
+----------------------+----------------------+----------------------+
198 candidates.