#142195 in 158276 T&E(3) min-expands

Post puzzles for others to solve here.

#142195 in 158276 T&E(3) min-expands

Postby denis_berthier » Fri Jun 16, 2023 4:43 am

.
As I'm slowly reaching the end of the 158,276 puzzles in mith's T&E(3) min-expand list, I have no really new findings (the effect of adding various subsets of impossible patterns remain similar to what I reported about the first slices of the list.
Here's a typical puzzle that requires no extra impossible pattern.

Code: Select all
+-------+-------+-------+
! 1 . 3 ! . . 6 ! . . 9 !
! . 5 7 ! 1 . 9 ! . . 6 !
! 6 9 . ! 3 . . ! . . . !
+-------+-------+-------+
! . . . ! . . 5 ! 8 9 . !
! . . 9 ! . . . ! . 6 7 !
! . . . ! . . . ! 4 2 . !
+-------+-------+-------+
! 3 6 . ! 5 . 1 ! . 7 . !
! . 7 1 ! . . . ! . . . !
! 9 . 5 ! . . 7 ! 6 1 . !
+-------+-------+-------+
1.3..6..9.571.9..669.3..........589...9....67......42.36.5.1.7..71......9.5..761.;37795;701910
SER = 10.4


Code: Select all
Resolution state after Singles (and whips[1]):
   +----------------------+----------------------+----------------------+
   ! 1      248    3      ! 2478   24578  6      ! 257    458    9      !
   ! 248    5      7      ! 1      248    9      ! 23     348    6      !
   ! 6      9      248    ! 3      24578  248    ! 1257   458    12458  !
   +----------------------+----------------------+----------------------+
   ! 247    1234   246    ! 2467   123467 5      ! 8      9      13     !
   ! 2458   12348  9      ! 248    12348  2348   ! 135    6      7      !
   ! 578    138    68     ! 6789   136789 38     ! 4      2      135    !
   +----------------------+----------------------+----------------------+
   ! 3      6      248    ! 5      2489   1      ! 29     7      248    !
   ! 248    7      1      ! 24689  234689 2348   ! 2359   3458   23458  !
   ! 9      248    5      ! 248    2348   7      ! 6      1      2348   !
   +----------------------+----------------------+----------------------+
178 candidates.
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: #142195 in 158276 T&E(3) min-expands

Postby pjb » Sat Jun 17, 2023 1:29 am

Lots of TH's (total of 11)

type 3 TH with 7 at r1c4, 9 at r7c5 and at r8c6

Code: Select all
 1       248*    3      | 248*7 24578  6       | 257    458    9     
 248*    5       7      | 1      248*   9      | 23     348    6     
 6       9       248*   | 3      24578  248*   | 1257   458    12458 
------------------------+----------------------+---------------------
 247     1234    246    | 2467   123467 5      | 8      9      13     
 2458    12348   9      | 248    12348  2348   | 135    6      7     
 578     138     68     | 6789   136789 38     | 4      2      135   
------------------------+----------------------+---------------------
 3       6       248*   | 5      248*9  1      | 29     7      248   
 248*    7       1      | 24689  234689 248*3  | 2359   3458   23458 
 9       248*    5      | 248*   2348   7      | 6      1      2348   

1.
chain1: (7)r1c4 - r1c5
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = (2-1)r3c9 = (1-7)r3c7 = r3c5 - r1c5
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - r3c9 = (1-7)r3c7 = r1c7 - r1c5 => -7 r1c5;

2.
chain1: (7)r1c4 - r1c7 = (7-2)r3c7
chain2: (9)r7c5 - r6c5 = r6c4 - r8c4 = r8c7 - (9=2)r7c7 - r3c7
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - r3c9 = (1-2)r3c7 => -2 r3c7;

3.
chain1: (7)r1c4 - r1c7 = (7-5)r3c7
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = (2-1)r3c9 = (1-5)r3c7
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - r3c9 = (1-5)r3c7 => -5 r3c7;

4.
chain1: (7)r1c4 - r1c7 = (7-1)r3c7 = (1-5)r3c9
chain2: (9)r7c5 - r6c5 = r6c4 - r8c4 = r8c7 - (9=2)r7c7 - r1c7 = (2-5)r3c9
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - (13=5)r6c9 - r3c9 => -5 r3c9

5.
chain1: (7)r1c4 - r1c7 = (7-1)r3c7 = r3c9 - (1=3)r4c9 - (13=5)r6c9 - r6c1 = (5-2)r5c1
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = r3c9 - r3c3 = r4c3 - r5c1
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - (13=5)r6c9 - r6c1 = (5-2)r5c1 => -2 r5c1

6.
chain1: (7)r1c4 - r1c7 = (7-1)r3c7 = r3c9 - (1=3)r4c9 - r8c9
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = r3c9 - (2=3)r2c7 - r2c8 = r8c8 - r8c9
chain3: (3)r8c6 - r8c7 = r9c9 - r8c9 => -3 r8c9;

7.
chain1: (7)r1c4 - r1c7 = (7-1)r3c7 = r3c9 - (1=3)r4c9 - r9c9 = r9c5 - r5c5
chain2: (9)r7c5 - (9=2)r7c7 - (2=3)r2c7 - r2c8 = r8c8 - r8c6 = r9c5 - r5c5
chain3: (3)r8c6 - r8c7 = r9c9 - (3=1)r4c9 - (13=5)r6c9 - (15=3)r5c7 - r5c5 => -3 r5c5

8.
chain1: (7)r1c4 - r1c7 = (7-1)r3c7 = r3c9 - (1=3)r4c9 - r9c9 = r9c5 - r8c5
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = r3c9 - (2=3)r2c7 - r2c8 = r8c8 - r8c5
chain3: (3)r8c6 - r8c5 => -3 r8c5

State after above:
Code: Select all
 1       248     3      | 2478   2458   6      | 257    458    9     
 248     5       7      | 1      248    9      | 23     348    6     
 6       9       248    | 3      24578  248    | 17     458    1248   
------------------------+----------------------+---------------------
 247     1234    246    | 2467   123467 5      | 8      9      13     
 458     12348   9      | 248    1248   2348   | 135    6      7     
 578     138     68     | 6789   136789 38     | 4      2      135   
------------------------+----------------------+---------------------
 3       6       248    | 5      2489   1      | 29     7      248   
 248     7       1      | 24689  24689  2348   | 2359   3458   2458   
 9       248     5      | 248    2348   7      | 6      1      2348   

then:

(8=7)r159c4 - (7=1)r12578c7 - (1=8)r5c456, r6c6 => -2 r4c4, -4 r4c4, -8 r6c4

9.
type 3 TH with 7 at r1c4, 9 at r7c5 and at 3 at r8c6
chain1: (7)r1c4 - (7=6)r4c4 - r4c3
chain2: (9)r7c5 - (9=2)r7c7 - r1c7 = r3c9 - r3c3 = (2-6)r4c3
chain3: (3)r8c6 - (3=8)r6c6 - (8=6)r6c3 - r4c3 => -6 r4c3;

Then kraken row 8:
chain1: (9)r8c4 - (9=7)r6c4 - r1c4
chain2: (9-6)r8c5 = r4c5 - (6=7)r4c4 - r1c4
chain3: (9)r8c7 - (9=2)r7c7 - r1c7 = (2-1)r3c9 = (1-7)r3c7 = r3c5 - r1c4 => -7 r1c4;

Naked triplets of 248 at r159c4 => -2 r8c4, -4 r8c4, -8 r8c4

10.
type 2 TH with SL between 9 at r7c5 and 3 at r8c6
Continuous chain: (9)r7c5 = (3)r8c6 - (3)r8c8 = (3)r2c8 - (3=2)r2c7 - (2=9)r7c7 - loop => -3 r8c7; -2 r8c7;

11.
type 2 TH with SL between 9 at r7c5 and 3 at r8c6
chain1: (9)r7c5 - r6c5 = r6c4 - (9=6)r8c4 - (6=7)r4c4 - r4c1 = (7-5)r6c1
chain2: (3)r8c6 - r8c8 = r9c9 - (3=1)r4c9 - (13=5)r6c9 - r6c1 => -5 r6c1;

2s at r79c5 only ones in row/column => -2 r9c4.
8s at r9c45 only ones in row/column => -8 r7c5.

Leading to:
Code: Select all
 1       24      3      | 248    5      6      | 7      48     9     
 48      5       7      | 1      48     9      | 2      3      6     
 6       9       248    | 3      7      24     | 1      5      48     
------------------------+----------------------+---------------------
 24      3       24     | 7      6      5      | 8      9      1     
 5       8       9      | 24     1      24     | 3      6      7     
 7       1       6      | 9      3      8      | 4      2      5     
------------------------+----------------------+---------------------
 3       6       248    | 5      24     1      | 9      7      248   
 248     7       1      | 6      9      3      | 5      48     248   
 9       24      5      | 48     248    7      | 6      1      3     

Then (2=4)r1c2 - (4=8)r1c8 - (8=4)r3c9 - (4=2)r3c6 => -2 r1c4, r3c3; stte

Phil
pjb
2014 Supporter
 
Posts: 2677
Joined: 11 September 2011
Location: Sydney, Australia

Re: #142195 in 158276 T&E(3) min-expands

Postby Cenoman » Sat Jun 17, 2023 3:39 pm

At the initial resolution state, note TH(248)b1289 having three guardians (7r1c4, 9r7c5, 8r8c6)
Code: Select all
 +-----------------------+----------------------------+--------------------------+
 |  1      248*    3     |  Aa2478*   24578    6      |  Bb257   B458    9       |
 |  248*   5       7     |    1       248*     9      |   B23    B348    6       |
 |  6      9       248*  |    3       24578    248*   |   c1257  B458    12458   |
 +-----------------------+----------------------------+--------------------------+
 |  247    1234    246   |    67-24   123467   5      |    8      9      13      |
 |  2458   12348   9     | Aea248    e12348   e2348   |   d135    6      7       |
 |  578    138     68    |    679-8   136789  e38     |    4      2      135     |
 +-----------------------+----------------------------+--------------------------+
 |  3      6       248*  |    5       2489*    1      |   C29     7      248     |
 |  248*   7       1     |   E69-248 E234689   2348*  |   D2359   3458   23458   |
 |  9      248*    5     |  Aa248*    2348     7      |    6      1      2348    |
 +-----------------------+----------------------------+--------------------------+

1. (248=7)r159c4 - r1c7 = (7-1)r3c7 = r5c7 - (1=2348)b5p4569 => -24 r4c4, -8 r6c4
2. (248=7)r159c4 - (7=34582)b3p12458 - (2=9)r7c7 - r8c7 = (96)r8c45 => -248 r8c4; lcls (eliminating 7r1c4, r46c5)

Code: Select all
 +-----------------------+------------------------+------------------------+
 |  1      248     3     |  248   57       6      |  257    458    9       |
 |  248    5       7     |  1     248      9      | B23     348    6       |
 |  6      9       248   |  3     57       248    | b1257   458   c12458   |
 +-----------------------+------------------------+------------------------+
 |  247    1234    246   |  67    12346    5      |  8      9      13      |
 |  2458   12348   9     |  248   12348    2348   |Aa135w   6      7       |
 | y578    138     68    | y679  z13689    38     |  4      2     x135     |
 +-----------------------+------------------------+------------------------+
 |  3      6       248   |  5     248-9    1      |Be29     7     d248     |
 |  248    7       1     |  69    234689   2348   |  2359   3458  d23458   |
 |  9      248     5     |  248   2348     7      |  6      1     d2348    |
 +-----------------------+------------------------+------------------------+

3. Kraken cell (135)r5c7
(1)r5c7 - r3c7 = (1-2)r3c9 = r789c9 - (2=9)r7c7
(3)r5c7 - (3=29)r27c7
(5)r5c7 - r6c9 = (57-9)r6c14 = (9)r6c5
=> -9 r7c5; 1 placement

Code: Select all
 +-----------------------+-----------------------+------------------------+
 |  1      248*    3     |  248*  57      6      |  257    458    9       |
 |  248*   5       7     |  1     248*    9      |  23     348    6       |
 |  6      9       248*  |  3     57      248*   |  1257   458    12458   |
 +-----------------------+-----------------------+------------------------+
 |  247    1234    246   |  67    12346   5      |  8      9      13      |
 |  2458   12348   9     |  248   12348   2348   |  135    6      7       |
 |  578    138     68    |  679   13689   38     |  4      2      135     |
 +-----------------------+-----------------------+------------------------+
 |  3      6       248*  |  5     248*    1      |  9      7      248     |
 |  248*   7       1     |  69    234689  248+3* |  235    3458   23458   |
 |  9      248*    5     |  248*  2348    7      |  6      1      2348    |
 +-----------------------+-----------------------+------------------------+

4. TH(248)b1289 has now a single guardian => +3 r8c6; 27 placements

Code: Select all
 +-------------------+-------------------+------------------+
 |  1    a24   3     |  48-2  5     6    |  7   b48   9     |
 |  48    5    7     |  1     48    9    |  2    3    6     |
 |  6     9    48-2  |  3     7    d24   |  1    5   c48    |
 +-------------------+-------------------+------------------+
 |  24    3    24    |  7     6     5    |  8    9    1     |
 |  5     8    9     |  24    1     24   |  3    6    7     |
 |  7     1    6     |  9     3     8    |  4    2    5     |
 +-------------------+-------------------+------------------+
 |  3     6    248   |  5     248   1    |  9    7    248   |
 |  248   7    1     |  6     9     3    |  5    48   248   |
 |  9     24   5     |  248   248   7    |  6    1    3     |
 +-------------------+-------------------+------------------+

5. W-Wing (2=4)r1c2 - r1c8 = r3c9 - (4=2)r3c6 => -2 r3c3, r1c4; ste
Cenoman
Cenoman
 
Posts: 3020
Joined: 21 November 2016
Location: France

Re: #142195 in 158276 T&E(3) min-expands

Postby ghfick » Sun Jun 18, 2023 2:23 am

Consider column 2 and {2,4,8}. r1459c2 has 4 guardians.
Also column 5 and {2,4,8}. r2357c5 has 4 guardians or r1257c5 has 4 guardians.
YZF_Sudoku gives forcing chains for each of these 'impossible patterns'. None are 'easy'.
Do these patterns have another name? Not at all like TH.
ghfick
 
Posts: 238
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: #142195 in 158276 T&E(3) min-expands

Postby denis_berthier » Sun Jun 18, 2023 4:30 am

.
Since when is a quad an impossible pattern? As there's no impossible pattern, there's nothing to guard against.
.
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: #142195 in 158276 T&E(3) min-expands

Postby denis_berthier » Sun Jun 18, 2023 4:38 am

.
Hi pjb, Cenoman

My resolution path is similar to yours. First use the tridagon with 3 guardians and then with 1 (and with 2 in the middle)

Using ORk-whips instead of ORk-forcing-whips allows shorter chains (6 instead of 8).

Code: Select all
t-whip[2]: r9n3{c5 c9} - b6n3{r6c9 .} ==> r5c5≠3

Trid-OR3-relation for digits 2, 4 and 8 in blocks:
        b1, with cells (marked #): r1c2, r2c1, r3c3
        b2, with cells (marked #): r1c4, r2c5, r3c6
        b7, with cells (marked #): r9c2, r8c1, r7c3
        b8, with cells (marked #): r9c4, r8c6, r7c5
with 3 guardians (in cells marked @): n7r1c4 n9r7c5 n3r8c6
   +----------------------+----------------------+----------------------+
   ! 1      248#   3      ! 2478#@ 24578  6      ! 257    458    9      !
   ! 248#   5      7      ! 1      248#   9      ! 23     348    6      !
   ! 6      9      248#   ! 3      24578  248#   ! 1257   458    12458  !
   +----------------------+----------------------+----------------------+
   ! 247    1234   246    ! 2467   123467 5      ! 8      9      13     !
   ! 2458   12348  9      ! 248    1248   2348   ! 135    6      7      !
   ! 578    138    68     ! 6789   136789 38     ! 4      2      135    !
   +----------------------+----------------------+----------------------+
   ! 3      6      248#   ! 5      2489#@ 1      ! 29     7      248    !
   ! 248#   7      1      ! 24689  234689 2348#@ ! 2359   3458   23458  !
   ! 9      248#   5      ! 248#   2348   7      ! 6      1      2348   !
   +----------------------+----------------------+----------------------+

z-chain[5]: r8n6{c5 c4} - b8n9{r8c4 r7c5} - r7c7{n9 n2} - r2c7{n2 n3} - c8n3{r2 .} ==> r8c5≠3


Trid-OR3-whip[6]: b6n3{r6c9 r5c7} - c7n1{r5 r3} - c7n7{r3 r1} - OR3{{n7r1c4 n3r8c6 | n9r7c5}} - r7c7{n9 n2} - r2c7{n2 .} ==> r8c9≠3
Trid-OR3-whip[6]: r6n9{c4 c5} - OR3{{n9r7c5 n7r1c4 | n3r8c6}} - b9n3{r8c7 r9c9} - r6n3{c9 c2} - r6n1{c2 c9} - r4c9{n1 .} ==> r6c4≠7


Code: Select all
biv-chain[4]: r3n1{c9 c7} - r3n7{c7 c5} - r6n7{c5 c1} - r6n5{c1 c9} ==> r6c9≠1, r3c9≠5
biv-chain[4]: c7n1{r5 r3} - r3n7{c7 c5} - r6n7{c5 c1} - b4n5{r6c1 r5c1} ==> r5c7≠5
singles ==> r6c9=5, r5c1=5
biv-chain[3]: c9n1{r3 r4} - b6n3{r4c9 r5c7} - r2c7{n3 n2} ==> r3c9≠2
whip[1]: c9n2{r9 .} ==> r7c7≠2, r8c7≠2
naked-single ==> r7c7=9

   +----------------------+----------------------+----------------------+
   ! 1      248    3      ! 2478   24578  6      ! 257    458    9      !
   ! 248    5      7      ! 1      248    9      ! 23     348    6      !
   ! 6      9      248    ! 3      24578  248    ! 1257   458    148    !
   +----------------------+----------------------+----------------------+
   ! 247    1234   246    ! 2467   123467 5      ! 8      9      13     !
   ! 5      12348  9      ! 248    1248   2348   ! 13     6      7      !
   ! 78     138    68     ! 689    136789 38     ! 4      2      5      !
   +----------------------+----------------------+----------------------+
   ! 3      6      248    ! 5      248    1      ! 9      7      248    !
   ! 248    7      1      ! 24689  24689  2348   ! 35     3458   248    !
   ! 9      248    5      ! 248    2348   7      ! 6      1      2348   !
   +----------------------+----------------------+----------------------+
At least one candidate of a previous Trid-OR3-relation between candidates n7r1c4 n9r7c5 n3r8c6 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n7r1c4 n3r8c6

hidden-pairs-in-a-block: b8{n6 n9}{r8c4 r8c5} ==> r8c5≠8, r8c5≠4, r8c5≠2, r8c4≠8, r8c4≠4, r8c4≠2


Trid-OR2-whip[3]: r8c7{n5 n3} - OR2{{n3r8c6 | n7r1c4}} - c7n7{r1 .} ==> r3c7≠5
t-whip[4]: r6n3{c6 c2} - r6n1{c2 c5} - c5n9{r6 r8} - c5n6{r8 .} ==> r4c5≠3
biv-chain[4]: b6n1{r5c7 r4c9} - c9n3{r4 r9} - c5n3{r9 r6} - r6n1{c5 c2} ==> r5c2≠1
Trid-OR2-whip[4]: r3n7{c7 c5} - OR2{{n7r1c4 | n3r8c6}} - c8n3{r8 r2} - r2c7{n3 .} ==> r3c7≠2
z-chain[5]: c5n9{r6 r8} - c5n6{r8 r4} - c5n1{r4 r5} - c7n1{r5 r3} - r3n7{c7 .} ==> r6c5≠7
hidden-single-in-a-row ==> r6c1=7
Trid-OR2-whip[4]: r4c9{n1 n3} - r9n3{c9 c5} - OR2{{n3r8c6 | n7r1c4}} - r4n7{c4 .} ==> r4c5≠1

Code: Select all
hidden-pairs-in-a-row: r4{n1 n3}{c2 c9} ==> r4c2≠4, r4c2≠2
biv-chain[4]: c5n3{r6 r9} - c9n3{r9 r4} - r4n1{c9 c2} - r6n1{c2 c5} ==> r6c5≠6, r6c5≠8, r6c5≠9
singles ==> r6c4=9, r8c4=6, r8c5=9, r4c5=6, r6c3=6, r4c4=7

   +-------------------+-------------------+-------------------+
   ! 1     248   3     ! 248   24578 6     ! 257   458   9     !
   ! 248   5     7     ! 1     248   9     ! 23    348   6     !
   ! 6     9     248   ! 3     24578 248   ! 17    458   148   !
   +-------------------+-------------------+-------------------+
   ! 24    13    24    ! 7     6     5     ! 8     9     13    !
   ! 5     2348  9     ! 248   1248  2348  ! 13    6     7     !
   ! 7     138   6     ! 9     13    38    ! 4     2     5     !
   +-------------------+-------------------+-------------------+
   ! 3     6     248   ! 5     248   1     ! 9     7     248   !
   ! 248   7     1     ! 6     9     2348  ! 35    3458  248   !
   ! 9     248   5     ! 248   2348  7     ! 6     1     2348  !
   +-------------------+-------------------+-------------------+
At least one candidate of a previous Trid-OR2-relation between candidates n7r1c4 n3r8c6 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n3r8c6


Trid-ORk-relation with only one candidate => r8c6=3

The end is easy, in BC3.
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: #142195 in 158276 T&E(3) min-expands

Postby totuan » Sun Jun 18, 2023 9:04 am

ghfick wrote:Consider column 2 and {2,4,8}. r1459c2 has 4 guardians.
Also column 5 and {2,4,8}. r2357c5 has 4 guardians or r1257c5 has 4 guardians.
YZF_Sudoku gives forcing chains for each of these 'impossible patterns'. None are 'easy'.
Do these patterns have another name? Not at all like TH.

Code: Select all
 *-----------------------------------------------------------------------------*
 | 1      *248     3       | 2478    24578   6       | 257     458     9       |
 | 248     5       7       | 1      #248     9       | 23      348     6       |
 | 6       9       248     | 3      #24578   248     | 1257    458     12458   |
 |-------------------------+-------------------------+-------------------------|
 | 247    *1234    246     | 2467    123467  5       | 8       9       13      |
 | 2458   *12348   9       | 248    #12348   2348    | 135     6       7       |
 | 578     138     68      | 6789    136789  38      | 4       2       135     |
 |-------------------------+-------------------------+-------------------------|
 | 3       6       248     | 5      #2489    1       | 29      7       248     |
 | 248     7       1       | 24689   234689  2348    | 2359    3458    23458   |
 | 9      *248     5       | 248     2348    7       | 6       1       2348    |
 *-----------------------------------------------------------------------------*

It seems:
DP(248)r1459c2 * marked cells => 4 guardians (13)r45c2
DP(248)r2357c5 # marked cells => 5 guardians (57)r3c5, (13)r5c5, (9)r7c5
I don’t use YZF solver, so don’t know what eliminated are?

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #142195 in 158276 T&E(3) min-expands

Postby DEFISE » Sun Jun 18, 2023 10:36 am

Tridagon with 3 guardians : 7r1c4, 9r7c5, 3r8c6
No initial basics.
S3-whip[9]: r3n7{c5 c7}- c7n1{r3 r5}- c5{r5n1 HT: r468n167}- c5n9{r6 r7}- r7c7{n9 n2}- c9n2{r7 r3}- r3n1{c9 .} => -7r1c4

2 guardians remaining : 9r7c5, 3r8c6

Box/Line: 7c4b5 => -7r4c5 -7r6c5
Hidden pairs: 57c5r13 => -2r1c5 -4r1c5 -8r1c5 -2r3c5 -4r3c5 -8r3c5
Naked triplets: 248c4r159 => -2r4c4 -4r4c4 -8r6c4 -2r8c4 -4r8c4 -8r8c4

whip[8]: r6n9{c5 c4}- r8n9{c4 c7}- r7c7{n9 n2}- r2c7{n2 n3}- c8n3{r2 r8}- r8n5{c8 c9}- r6n5{c9 c1}- r6n7{c1 .} => -9r7c5

1 guardian remaining : 3r8c6 => +3r8c6

Single(s): 8r6c6, 6r6c3, 9r7c7, 3r9c9, 1r4c9, 5r6c9, 3r5c7, 2r2c7, 7r6c1, 9r6c4, 6r8c4, 7r4c4, 5r8c7, 7r1c7, 5r1c5, 7r3c5, 1r3c7, 3r2c8, 5r3c8, 6r4c5, 3r4c2, 1r6c2, 3r6c5, 1r5c5, 5r5c1, 8r5c2, 9r8c5
whip[3]: r2c5{n4 n8}- r1n8{c4 c8}- r3c9{n8 .} => -4r3c6
STTE
DEFISE
 
Posts: 291
Joined: 16 April 2020
Location: France

Re: #142195 in 158276 T&E(3) min-expands

Postby ghfick » Sun Jun 18, 2023 12:25 pm

Hi Totuan,

First exclude r5c5 <>3 with:
Empty Rectangle : 3 in b6 connected by r9 => r5c5 <> 3

Then, there are four distinct forcing chains as noted by YZF_Sudoku

1) Impossible Pattern(248{r1257c5}) Forcing Chain: Each true guardian of Impossible Pattern will all lead to: r1c5<>8
5r1c5
7r1c5
1r5c5 - (1=23597)r12578c7 - (7=2485)b2p1259
9r7c5 - (9=2)r7c7 - (2=34587)b3p12458 - (7=2485)b2p1259

2) Impossible Pattern(248{r2357c5}) Forcing Chain: Each true guardian of Impossible Pattern will all lead to: r3c5<>2
5r3c5
7r3c5
1r5c5 - (1=23597)r12578c7 - 7r3c7 = 7r3c5
9r7c5 - (9=2)r7c7 - 2r789c9 = 2r3c9

3) Impossible Pattern(248{r2357c5}) Forcing Chain: Each true guardian of Impossible Pattern will all lead to: r3c5<>2,r3c5<>4,r3c5<>8
5r3c5
7r3c5
1r5c5 - (1=23597)r12578c7 - 7r3c7 = 7r3c5
9r7c5 - (9=2)r7c7 - (2=34587)b3p12458 - 7r3c7 = 7r3c5

4) Impossible Pattern(248{r1459c2}) Forcing Chain: Each true guardian of Impossible Pattern will all lead to: r4c5<>3
1r4c2 - (1=3)r4c9
3r4c2
1r5c2 - (1=2483)b5p4569
3r5c2 - 3r5c7 = 3r46c9 - 3r9c9 = 3r9c5

Gordon
ghfick
 
Posts: 238
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: #142195 in 158276 T&E(3) min-expands

Postby totuan » Sun Jun 18, 2023 4:27 pm

Hi Gordon,
Yes. IMO, they are “DP - deadly pattern”. The lower level of impossible patterns :D .

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #142195 in 158276 T&E(3) min-expands

Postby denis_berthier » Sun Jun 18, 2023 6:14 pm

totuan wrote: IMO, they are “DP - deadly pattern”. The lower level of impossible patterns :D .


A deadly pattern is not an impossible pattern (at any high or low level). It's a pattern that implies multiple solutions.
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: #142195 in 158276 T&E(3) min-expands

Postby denis_berthier » Mon Jun 19, 2023 2:48 am

DEFISE wrote:S3-whip[9]: r3n7{c5 c7}- c7n1{r3 r5}- c5{r5n1 HT: r468n167}- c5n9{r6 r7}- r7c7{n9 n2}- c9n2{r7 r3}- r3n1{c9 .} => -7r1c4

Good 1st step that opens the way to a short solution.
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: #142195 in 158276 T&E(3) min-expands

Postby yzfwsf » Tue Dec 10, 2024 2:37 pm

totuan wrote:Hi Gordon,
Yes. IMO, they are “DP - deadly pattern”. The lower level of impossible patterns :D .

totuan

Hi totuan, this is not a dead pattern, it is a kraken A...LS forcing chain.
yzfwsf
 
Posts: 922
Joined: 16 April 2019


Return to Puzzles