.
Here is a solution using tridagon plus three different impossible patterns (all in Select1 or Select2) with very short chains (all lengths ≤ 3)
- Code: Select all
hidden-pairs-in-a-row: r5{n1 n7}{c1 c3} ==> r5c3≠8, r5c3≠6, r5c3≠3, r5c1≠6
hidden-pairs-in-a-column: c6{n7 n9}{r2 r3} ==> r3c6≠8, r3c6≠6, r3c6≠3, r2c6≠8, r2c6≠6, r2c6≠3
Trid-OR2-relation for digits 3, 8 and 6 in blocks:
b2, with cells (marked #): r1c6, r2c5, r3c4
b3, with cells (marked #): r1c8, r2c9, r3c7
b5, with cells (marked #): r4c6, r5c5, r6c4
b6, with cells (marked #): r4c9, r5c8, r6c7
with 2 guardians (in cells marked @): n2r1c8 n4r3c7
+----------------------+----------------------+----------------------+
! 16 2368 12368 ! 4 5 368# ! 7 2368#@ 9 !
! 4679 5 236789 ! 1 368# 79 ! 23468 23468 368# !
! 4679 34689 36789 ! 368# 2 79 ! 3468#@ 1 5 !
+----------------------+----------------------+----------------------+
! 2 368 4 ! 5 7 368# ! 1 9 368# !
! 17 368 17 ! 9 368# 2 ! 5 368# 4 !
! 569 3689 35689 ! 368# 1 4 ! 368# 7 2 !
+----------------------+----------------------+----------------------+
! 3 1 26 ! 2678 9 5 ! 2468 2468 678 !
! 456 7 256 ! 2368 3468 368 ! 9 23568 1 !
! 8 2469 2569 ! 2367 346 1 ! 236 2356 367 !
+----------------------+----------------------+----------------------+
The three 3-digit impossible patterns that will be used, two in Imp630-Select1 and one in Imp630-Select2:
- Code: Select all
EL13c290-OR3-relation for digits: 3, 6 and 8
in cells (marked #): (r6c4 r5c2 r5c8 r5c5 r4c2 r4c9 r4c6 r1c8 r1c6 r2c9 r2c5 r3c2 r3c4)
with 3 guardians (in cells marked @) : n2r1c8 n4r3c2 n9r3c2
+-------------------------+-------------------------+-------------------------+
! 16 2368 12368 ! 4 5 368# ! 7 2368#@ 9 !
! 4679 5 236789 ! 1 368# 79 ! 23468 23468 368# !
! 4679 34689#@ 36789 ! 368# 2 79 ! 3468 1 5 !
+-------------------------+-------------------------+-------------------------+
! 2 368# 4 ! 5 7 368# ! 1 9 368# !
! 17 368# 17 ! 9 368# 2 ! 5 368# 4 !
! 569 3689 35689 ! 368# 1 4 ! 368 7 2 !
+-------------------------+-------------------------+-------------------------+
! 3 1 26 ! 2678 9 5 ! 2468 2468 678 !
! 456 7 256 ! 2368 3468 368 ! 9 23568 1 !
! 8 2469 2569 ! 2367 346 1 ! 236 2356 367 !
+-------------------------+-------------------------+-------------------------+
EL14c1s-OR4-relation for digits: 3, 6 and 8
in cells (marked #): (r8c8 r8c6 r8c4 r3c4 r1c8 r1c6 r2c9 r2c5 r5c8 r5c5 r4c9 r4c6 r6c7 r6c4)
with 4 guardians (in cells marked @) : n2r8c8 n5r8c8 n2r8c4 n2r1c8
+-------------------------+-------------------------+-------------------------+
! 16 2368 12368 ! 4 5 368# ! 7 2368#@ 9 !
! 4679 5 236789 ! 1 368# 79 ! 23468 23468 368# !
! 4679 34689 36789 ! 368# 2 79 ! 3468 1 5 !
+-------------------------+-------------------------+-------------------------+
! 2 368 4 ! 5 7 368# ! 1 9 368# !
! 17 368 17 ! 9 368# 2 ! 5 368# 4 !
! 569 3689 35689 ! 368# 1 4 ! 368# 7 2 !
+-------------------------+-------------------------+-------------------------+
! 3 1 26 ! 2678 9 5 ! 2468 2468 678 !
! 456 7 256 ! 2368#@ 3468 368# ! 9 23568#@ 1 !
! 8 2469 2569 ! 2367 346 1 ! 236 2356 367 !
+-------------------------+-------------------------+-------------------------+
Note that there is another (and simpler) EL14c1 relation, but it will nor be used:
EL14c1-OR3-relation for digits: 3, 6 and 8
in cells (marked #): (r3c4 r2c9 r2c5 r1c2 r1c8 r1c6 r4c9 r4c6 r5c2 r5c8 r5c5 r6c2 r6c7 r6c4)
with 3 guardians (in cells marked @) : n2r1c2 n2r1c8 n9r6c2
+----------------------+----------------------+----------------------+
! 16 2368#@ 12368 ! 4 5 368# ! 7 2368#@ 9 !
! 4679 5 236789 ! 1 368# 79 ! 23468 23468 368# !
! 4679 34689 36789 ! 368# 2 79 ! 3468 1 5 !
+----------------------+----------------------+----------------------+
! 2 368 4 ! 5 7 368# ! 1 9 368# !
! 17 368# 17 ! 9 368# 2 ! 5 368# 4 !
! 569 3689#@ 35689 ! 368# 1 4 ! 368# 7 2 !
+----------------------+----------------------+----------------------+
! 3 1 26 ! 2678 9 5 ! 2468 2468 678 !
! 456 7 256 ! 2368 3468 368 ! 9 23568 1 !
! 8 2469 2569 ! 2367 346 1 ! 236 2356 367 !
+----------------------+----------------------+----------------------+
EL13c176s-OR6-relation for digits: 3, 6 and 8
in cells (marked #): (r8c5 r8c6 r8c8 r3c7 r1c6 r2c5 r2c9 r2c8 r6c7 r4c6 r4c9 r5c5 r5c8)
with 6 guardians (in cells marked @) : n4r8c5 n2r8c8 n5r8c8 n4r3c7 n2r2c8 n4r2c8
+-------------------------+-------------------------+-------------------------+
! 16 2368 12368 ! 4 5 368# ! 7 2368 9 !
! 4679 5 236789 ! 1 368# 79 ! 23468 23468#@ 368# !
! 4679 34689 36789 ! 368 2 79 ! 3468#@ 1 5 !
+-------------------------+-------------------------+-------------------------+
! 2 368 4 ! 5 7 368# ! 1 9 368# !
! 17 368 17 ! 9 368# 2 ! 5 368# 4 !
! 569 3689 35689 ! 368 1 4 ! 368# 7 2 !
+-------------------------+-------------------------+-------------------------+
! 3 1 26 ! 2678 9 5 ! 2468 2468 678 !
! 456 7 256 ! 2368 3468#@ 368# ! 9 23568#@ 1 !
! 8 2469 2569 ! 2367 346 1 ! 236 2356 367 !
+-------------------------+-------------------------+-------------------------+
We first have a few Trid-OR2-whips[2 or 3] using the same Trid-OR3-relation at different places in the chain:
Trid-OR2-whip[2]: OR2{{n2r1c8 | n4r3c7}} - r7n4{c7 .} ==> r7c8≠2Trid-OR2-whip[3]: OR2{{n2r1c8 | n4r3c7}} - c2n4{r3 r9} - c2n2{r9 .} ==> r1c3≠2
Trid-OR2-whip[3]: OR2{{n4r3c7 | n2r1c8}} - b9n2{r9c8 r9c7} - c2n2{r9 .} ==> r7c7≠4hidden-single-in-a-block ==> r7c8=4
Trid-OR2-whip[3]: OR2{{n4r3c7 | n2r1c8}} - c2n2{r1 r9} - c2n4{r9 .} ==> r3c1≠4
Trid-OR2-whip[3]: c2n4{r9 r3} - OR2{{n4r3c7 | n2r1c8}} - c2n2{r1 .} ==> r9c2≠6, r9c2≠9singles ==> r9c3=9, r9c8=5
- Code: Select all
+-------------------+-------------------+-------------------+
! 16 2368 1368 ! 4 5 368 ! 7 2368 9 !
! 4679 5 23678 ! 1 368 79 ! 23468 2368 368 !
! 679 34689 3678 ! 368 2 79 ! 3468 1 5 !
+-------------------+-------------------+-------------------+
! 2 368 4 ! 5 7 368 ! 1 9 368 !
! 17 368 17 ! 9 368 2 ! 5 368 4 !
! 569 3689 3568 ! 368 1 4 ! 368 7 2 !
+-------------------+-------------------+-------------------+
! 3 1 26 ! 2678 9 5 ! 268 4 678 !
! 456 7 256 ! 2368 3468 368 ! 9 2368 1 !
! 8 24 9 ! 2367 346 1 ! 236 5 367 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c176s-OR6-relation between candidates n4r8c5 n2r8c8 n5r8c8 n4r3c7 n2r2c8 n4r2c8 has been eliminated.
There remains an EL13c176s-OR4-relation between candidates: n4r8c5 n2r8c8 n4r3c7 n2r2c8
At least one candidate of a previous EL14c1s-OR4-relation between candidates n2r8c8 n5r8c8 n2r8c4 n2r1c8 has just been eliminated.
There remains an EL14c1s-OR3-relation between candidates: n2r8c8 n2r8c4 n2r1c8
EL14c1s-OR3-whip[2]: OR3{{n2r8c4 n2r8c8 | n2r1c8}} - c2n2{r1 .} ==> r8c3≠2biv-chain[3]: r8n2{c4 c8} - r1n2{c8 c2} - b7n2{r9c2 r7c3} ==> r7c4≠2
z-chain[3]: c4n2{r8 r9} - b7n2{r9c2 r7c3} - b7n6{r7c3 .} ==> r8c4≠6
EL13c290-OR3-whip[3]: OR3{{n9r3c2 n4r3c2 | n2r1c8}} - c2n2{r1 r9} - c2n4{r9 .} ==> r3c2≠3, r3c2≠6z-chain[3]: c2n6{r6 r1} - b1n2{r1c2 r2c3} - r7c3{n2 .} ==> r6c3≠6
EL13c290-OR3-whip[3]: OR3{{n9r3c2 n4r3c2 | n2r1c8}} - c2n2{r1 r9} - c2n4{r9 .} ==> r3c2≠8- Code: Select all
biv-chain[4]: c1n4{r8 r2} - r3c2{n4 n9} - b4n9{r6c2 r6c1} - c1n5{r6 r8} ==> r8c1≠6
whip[1]: b7n6{r8c3 .} ==> r1c3≠6, r2c3≠6, r3c3≠6
biv-chain[4]: b4n9{r6c1 r6c2} - r3c2{n9 n4} - b7n4{r9c2 r8c1} - c1n5{r8 r6} ==> r6c1≠6
whip[1]: b4n6{r6c2 .} ==> r1c2≠6
+-------------------+-------------------+-------------------+
! 16 238 138 ! 4 5 368 ! 7 2368 9 !
! 4679 5 2378 ! 1 368 79 ! 23468 2368 368 !
! 679 49 378 ! 368 2 79 ! 3468 1 5 !
+-------------------+-------------------+-------------------+
! 2 368 4 ! 5 7 368 ! 1 9 368 !
! 17 368 17 ! 9 368 2 ! 5 368 4 !
! 59 3689 358 ! 368 1 4 ! 368 7 2 !
+-------------------+-------------------+-------------------+
! 3 1 26 ! 678 9 5 ! 268 4 678 !
! 45 7 56 ! 238 3468 368 ! 9 2368 1 !
! 8 24 9 ! 2367 346 1 ! 236 5 367 !
+-------------------+-------------------+-------------------+
EL13c176s-OR4-relation between candidates n4r8c5, n2r8c8, n4r3c7 and n2r2c8
+ same valence for candidates n4r8c5 and n4r3c7 via c-chain[4]: n4r8c5,n4r9c5,n4r9c2,n4r3c2,n4r3c7
==> EL13c176s-OR4-relation can be split into two EL13c176s-OR3-relations with respective lists of guardians:
n2r8c8 n4r3c7 n2r2c8 and n4r8c5 n2r8c8 n2r2c8 .
EL13c176s-OR3-whip[3]: OR3{{n2r2c8 n2r8c8 | n4r8c5}} - b7n4{r8c1 r9c2} - c2n2{r9 .} ==> r1c8≠2The end is easy, in S3+BC3:
- Code: Select all
singles ==> r1c2=2, r9c2=4, r3c2=9, r3c6=7, r2c6=9, r3c1=6, r1c1=1, r5c1=7, r2c1=4, r5c3=1, r8c1=5, r6c1=9, r8c3=6, r7c3=2, r6c3=5, r3c7=4, r2c3=7, r8c5=4
t-whip[2]: c5n8{r5 r2} - b3n8{r2c9 .} ==> r5c8≠8
biv-chain[3]: r8c6{n8 n3} - r9c5{n3 n6} - b2n6{r2c5 r1c6} ==> r1c6≠8
finned-swordfish-in-rows: n8{r1 r3 r8}{c8 c3 c4} ==> r7c4≠8
whip[1]: r7n8{c9 .} ==> r8c8≠8
whip[1]: c8n8{r2 .} ==> r2c7≠8, r2c9≠8
biv-chain[3]: r8c8{n3 n2} - r9n2{c7 c4} - r9n7{c4 c9} ==> r9c9≠3
hidden-pairs-in-a-block: b9{n2 n3}{r8c8 r9c7} ==> r9c7≠6
biv-chain[3]: r5c8{n6 n3} - b9n3{r8c8 r9c7} - r9c5{n3 n6} ==> r5c5≠6
biv-chain[3]: r5c8{n6 n3} - r5c5{n3 n8} - r2n8{c5 c8} ==> r2c8≠6
finned-x-wing-in-columns: n6{c6 c8}{r1 r4} ==> r4c9≠6
swordfish-in-rows: n6{r1 r4 r5}{c8 c6 c2} ==> r6c2≠6
biv-chain[3]: r4n6{c2 c6} - r6n6{c4 c7} - b6n8{r6c7 r4c9} ==> r4c2≠8
biv-chain[3]: r5c5{n3 n8} - r4n8{c6 c9} - c9n3{r4 r2} ==> r2c5≠3
whip[1]: r2n3{c9 .} ==> r1c8≠3
biv-chain[2]: b9n3{r8c8 r9c7} - c5n3{r9 r5} ==> r5c8≠3
stte